#!/usr/bin/env python # -*- encoding: utf-8 -*- from torch import distributed as dist from colossalai.registry import DIST_GROUP_INITIALIZER from ..parallel_mode import ParallelMode from .process_group_initializer import ProcessGroupInitializer @DIST_GROUP_INITIALIZER.register_module class Initializer_Data(ProcessGroupInitializer): """A ProcessGroupInitializer for data parallelism. Args: rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_data_parallel_group = self.world_size // self.data_parallel_size def init_dist_group(self): """Initialize data parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): A Data parallelism's information tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.DATA for i in range(self.num_data_parallel_group): ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode