import torch import pytest from colossalai.tensor import ColoTensor from numpy import allclose import colossalai from colossalai.utils import free_port from colossalai.tensor import distspec, ColoTensorSpec from colossalai.core import global_context as gpc import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import distspec, ColoTensor, ProcessGroup from functools import partial def _run_tensor_indexing(): pg = ProcessGroup() torch_t = torch.randn(2, 3) colo_t = ColoTensor(torch_t, ColoTensorSpec(pg)) assert allclose(torch_t[:, 1], colo_t[:, 1]) def _run_wrapped_tensor_func(): pg = ProcessGroup() t_ref = torch.randn(4, 5) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) # non-func attr assert t.is_cuda == t_ref.is_cuda # return 1 torch.Tensor t_abs = t.abs() assert isinstance(t_abs, ColoTensor) and torch.equal(t_abs, t_ref.abs()) # return 1 non-torch.Tensor assert t.dim() == t_ref.dim() # return >1 torch.Tensor assert isinstance(t, ColoTensor) t_split1, t_split2 = t.split(2) assert isinstance(t_split1, ColoTensor) and isinstance(t_split2, ColoTensor), f"{type(t_split1)} {type(t_split2)}" def _run_operand(world_size): pg = ProcessGroup() t_ref = torch.randn(4, 5) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) t_ref_res = t_ref + t_ref t_res = t + t assert isinstance(t_res, ColoTensor) assert torch.allclose(t_ref_res, t_res) pg = ProcessGroup(tp_degree=world_size) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) t.set_dist_spec(distspec.shard([0], [world_size])) t_new = torch.zeros_like(t) assert isinstance(t_new, ColoTensor) assert t_new.is_sharded() #### Test Distributed init a Colotensor def _run_view(world_size): t_ref = torch.randn(4, 5) rank = gpc.get_global_rank() pg = ProcessGroup(rank, list(range(world_size)), tp_degree=world_size) t = ColoTensor.from_torch_tensor( t_ref, ColoTensorSpec(pg, dist_attr=distspec.shard(dims=[0], num_partitions=[pg.tp_world_size()]))) assert t.size_global()[0] == 4 * world_size assert t.size_global(1) == 5 assert t.size_global() == torch.Size([4 * world_size, 5]) t = t.view_global(4 * 5 * world_size) assert t.shape == torch.Size([4 * 5 * world_size]) def _run_tensor_shard_init(world_size): t_ref = torch.randn(4, 5) pg = ProcessGroup(tp_degree=world_size) shard_attr = distspec.shard(dims=[0], num_partitions=[pg.tp_world_size()]) tensor_spec = ColoTensorSpec(pg, dist_attr=shard_attr) t = ColoTensor.from_torch_tensor(t_ref.clone(), tensor_spec) t.set_dist_spec(distspec.replicate()) assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape} vs ({4 * world_size, 5})" def _run_tensor_replicated_init(world_size): t_ref = torch.randn(4 * world_size, 5) pg = ProcessGroup() spec = ColoTensorSpec(pg) t = ColoTensor.from_torch_tensor(t_ref.clone(), spec) assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape}" def _run_process_group(world_size): pg1 = ProcessGroup() pg2 = ProcessGroup() assert pg1 == pg2 def run_dist_tests(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_tensor_shard_init(world_size) _run_tensor_replicated_init(world_size) _run_view(world_size) _run_process_group(world_size) _run_tensor_indexing() _run_operand(world_size) _run_wrapped_tensor_func() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_dist_cases(world_size): run_func = partial(run_dist_tests, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_dist_cases(1)