#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.distributed as dist from torch.distributed import ReduceOp from torch import Tensor from colossalai.context import ParallelMode from colossalai.core import global_context as gpc def all_gather(tensor: Tensor, dim: int, parallel_mode: ParallelMode, async_op: bool = False) -> Tensor: r"""Gathers all tensors from the parallel group and concatenates them in a specific dimension. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be gathered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-together only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: shape = list(tensor.shape) shape[0], shape[dim] = shape[dim], shape[0] shape[0] *= depth out = torch.empty(shape, dtype=tensor.dtype, device=tensor.device) temp = list(torch.chunk(out, depth, dim=0)) group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode) work = dist.all_gather(tensor_list=temp, tensor=tensor.transpose(0, dim).contiguous(), group=group, async_op=async_op) out = torch.transpose(out, 0, dim) if async_op: return out, work else: return out def reduce_scatter(tensor: Tensor, dim: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False) -> Tensor: r"""Reduces all tensors then scatters it in a specific dimension to all members in the parallel group. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduce_scattered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp `_. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce_scatter only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: temp = list(map(lambda x: x.contiguous(), torch.chunk(tensor, depth, dim=dim))) out = torch.empty(temp[0].shape, dtype=tensor.dtype, device=tensor.device) group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode) work = dist.reduce_scatter(output=out, input_list=temp, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def all_reduce(tensor: Tensor, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False) -> Tensor: r"""Reduces the tensor data across whole parallel group in such a way that all get the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be all-reduced. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp `_. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-gather only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode) work = dist.all_reduce(out, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, async_op: bool = False): r"""Broadcast tensors to whole parallel group. Tensor must have the same number of elements in all processes participating in the collective. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be broadcast. src (int): Source rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The tensor need to be broadcast only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode) work = dist.broadcast(out, src=src, group=group, async_op=async_op) if async_op: return out, work else: return out def reduce(tensor: Tensor, dst: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False): r"""Reduce tensors across whole parallel group. Only the process with rank ``dst`` is going to receive the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduced. dst (int): Destination rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if tensor.device.type == "cpu" else gpc.get_group(parallel_mode) work = dist.reduce(out, dst=dst, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def scatter_object_list(scatter_object_output_list, scatter_object_input_list, src=0, group=None) -> None: r"""Modified from `torch.distributed.scatter_object_list ` to fix issues """ if dist.distributed_c10d._rank_not_in_group(group): return if (not isinstance(scatter_object_output_list, list) or len(scatter_object_output_list) < 1): raise RuntimeError("Expected argument scatter_object_output_list to be a list of size at least 1.") # set tensor device to cuda if backend is nccl device = torch.cuda.current_device() if dist.get_backend(group) == 'nccl' else torch.device("cpu") my_rank = dist.get_rank() # use global rank if my_rank == src: tensor_list, tensor_sizes = zip( *[dist.distributed_c10d._object_to_tensor(obj) for obj in scatter_object_input_list]) tensor_list = list(map(lambda x: x.to(device), tensor_list)) tensor_sizes = list(map(lambda x: x.to(device), tensor_sizes)) # Src rank broadcasts the maximum tensor size. This is because all ranks are # expected to call into scatter() with equal-sized tensors. if my_rank == src: max_tensor_size = max(tensor_sizes) for tensor in tensor_list: tensor.resize_(max_tensor_size) else: max_tensor_size = torch.tensor([0], dtype=torch.long).to(device) dist.broadcast(max_tensor_size, src=src, group=group) # Scatter actual serialized objects output_tensor = torch.empty(max_tensor_size.item(), dtype=torch.uint8).to(device) dist.scatter( output_tensor, scatter_list=None if my_rank != src else tensor_list, src=src, group=group, ) # Scatter per-object sizes to trim tensors when deserializing back to object obj_tensor_size = torch.tensor([0], dtype=torch.long).to(device) dist.scatter( obj_tensor_size, scatter_list=None if my_rank != src else tensor_sizes, src=src, group=group, ) output_tensor, obj_tensor_size = output_tensor.cpu(), obj_tensor_size.cpu() # Deserialize back to object scatter_object_output_list[0] = dist.distributed_c10d._tensor_to_object(output_tensor, obj_tensor_size)