import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence VIT # =============================== config = transformers.ViTConfig( num_hidden_layers=4, # hidden_size=128, # intermediate_size=256, num_attention_heads=4) # define data gen function def data_gen(): pixel_values = torch.randn(1, 3, 224, 224) return dict(pixel_values=pixel_values) def data_gen_for_image_classification(): data = data_gen() data['labels'] = torch.tensor([0]) return data def data_gen_for_masked_image_modeling(): data = data_gen() num_patches = (config.image_size // config.patch_size)**2 bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() data['bool_masked_pos'] = bool_masked_pos return data # define output transform function output_transform_fn = lambda x: x # function to get the loss loss_fn_for_vit_model = lambda x: x.pooler_output.mean() loss_fn_for_image_classification = lambda x: x.logits.mean() loss_fn_for_masked_image_modeling = lambda x: x.loss # register the following models # transformers.ViTModel, # transformers.ViTForMaskedImageModeling, # transformers.ViTForImageClassification, model_zoo.register(name='transformers_vit', model_fn=lambda: transformers.ViTModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_vit_model, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_vit_for_masked_image_modeling', model_fn=lambda: transformers.ViTForMaskedImageModeling(config), data_gen_fn=data_gen_for_masked_image_modeling, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_masked_image_modeling, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_vit_for_image_classification', model_fn=lambda: transformers.ViTForImageClassification(config), data_gen_fn=data_gen_for_image_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_image_classification, model_attribute=ModelAttribute(has_control_flow=True))