from typing import Callable, List, Tuple import torch from colossalai._analyzer.fx.node_util import compute_size_in_bytes from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem from ..registry import meta_register __all__ = ["tensor_related_metainfo"] def tensor_related_metainfo(bwd_mem_out_factor: float = 1, bwd_mem_tmp_factor: float = 0) -> Callable: """torch.Tensor related metainfo generator template Args: bwd_mem_out_factor (float, optional): backward activation memory cost factor. Defaults to 1. bwd_mem_tmp_factor (float, optional): backward temp memory cost factor. Defaults to 0. Returns: Callable: torch.Tensor related metainfo generator """ def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """torch.Tensor related metainfo generator Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ outputs = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data # compute costs are all zero compute_cost = TrainCycleItem(fwd=0, bwd=0, total=0) # memory costs # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward fwd_mem_cost = MemoryCost(activation=compute_size_in_bytes(outputs) * 2, parameter=0, temp=0, buffer=0) bwd_mem_cost = MemoryCost( activation=compute_size_in_bytes(outputs) * bwd_mem_out_factor, parameter=0, temp=compute_size_in_bytes(outputs) * bwd_mem_tmp_factor, buffer=0, ) total_mem_cost = MemoryCost( activation=fwd_mem_cost.activation + bwd_mem_cost.activation, parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter, temp=fwd_mem_cost.temp + bwd_mem_cost.temp, buffer=fwd_mem_cost.buffer + bwd_mem_cost.buffer, ) memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [] fwd_buffer = [] if isinstance(outputs, tuple) or isinstance(outputs, list) or isinstance(outputs, dict): # tuple of tensors fwd_out = [torch.zeros_like(tensor) for tensor in outputs] else: # enaged_tensors is a single tensor fwd_out = [torch.zeros_like(outputs)] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out return meta_func # register torch.Tensor related metainfo # (0, 0) meta_register.register([torch.tensor, torch.Tensor.to, torch.Tensor.unsqueeze, torch.unsqueeze, torch.arange])( tensor_related_metainfo(0, 0) ) # (1, 0) meta_register.register( [ torch.Tensor.flatten, torch.flatten, torch.Tensor.transpose, torch.transpose, torch.Tensor.permute, torch.permute, torch.Tensor.split, torch.split, torch.Tensor.view, ] )(tensor_related_metainfo(1, 0)) # (1, 1) meta_register.register([torch.Tensor.type, torch.Tensor.contiguous])(tensor_related_metainfo(1, 1))