import pytest import colossalai import torch from colossalai.context.parallel_mode import ParallelMode import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.core import global_context as gpc from functools import partial from tests.test_tensor._utils import set_seed from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.nn.parallel.data_parallel import ZeroDDP from colossalai.gemini import ChunkManager, GeminiManager from colossalai.testing import parameterize from colossalai.nn.optimizer import HybridAdam from colossalai.zero import ZeroOptimizer from colossalai.tensor import ProcessGroup def init_zero(model, use_chunk, use_zero, placement_policy): chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero, init_device=GeminiManager.get_default_device(placement_policy)) gemini_manager = GeminiManager(placement_policy, chunk_manager) pg = ProcessGroup() return ZeroDDP(model, gemini_manager, pg) def run_step(model, optim, criterion, data, label): optim.zero_grad() logits = model(data) loss = criterion(logits, label) optim.backward(loss) optim.step() def check_state_dict_eq(state_dict, other): for p, state in state_dict['state'].items(): other_state = other['state'][p] for k, v in state.items(): if isinstance(v, torch.Tensor): assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}' else: assert v == other_state[k] @parameterize('use_chunk', [False, True]) @parameterize('use_zero', [False, True]) @parameterize('placement_policy', ['cuda', 'cpu']) def run_nested_model(use_chunk, use_zero, placement_policy): get_components_func = non_distributed_component_funcs.get_callable('nested_model') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) with ColoInitContext(device=get_current_device()): model = model_builder() set_seed(42) with ColoInitContext(device=get_current_device()): model_copy = model_builder() model = init_zero(model, use_chunk, use_zero, placement_policy) model_copy = init_zero(model_copy, use_chunk, use_zero, placement_policy) optim = HybridAdam(model.parameters(), lr=1e-3) optim = ZeroOptimizer(optim, model, initial_scale=32) optim_copy = HybridAdam(model_copy.parameters(), lr=1e-3) optim_copy = ZeroOptimizer(optim_copy, model_copy, initial_scale=32) model.train() model_copy.train() set_seed(gpc.get_local_rank(ParallelMode.DATA)) data_iter = iter(train_dataloader) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model, optim, criterion, data, label) optim_copy.load_state_dict(optim.state_dict()) check_state_dict_eq(optim.state_dict(), optim_copy.state_dict()) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model_copy, optim_copy, criterion, data, label) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_nested_model() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_zero_optim_state_dist(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_optim_state_dist(2)