import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from functools import partial from tests.test_tensor._utils import set_seed from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.testing import parameterize from colossalai.nn.optimizer import HybridAdam from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_optim import ShardedOptimizerV2 from colossalai.tensor import ProcessGroup def init_zero(model_builder, placement_policy): device = get_current_device() if placement_policy == 'cuda' else torch.device('cpu') shard_strategy = TensorShardStrategy() with ZeroInitContext(target_device=device, shard_strategy=shard_strategy, shard_param=True): model = model_builder() model = ShardedModelV2( model, shard_strategy, tensor_placement_policy=placement_policy, reuse_fp16_shard=True, ) optim = HybridAdam(model.parameters(), lr=1e-3) optim = ShardedOptimizerV2(model, optim, initial_scale=32) return model, optim def run_step(model, optim, criterion, data, label): optim.zero_grad() logits = model(data) loss = criterion(logits, label) optim.backward(loss) optim.step() def check_state_dict_eq(state_dict, other): for p, state in state_dict['state'].items(): other_state = other['state'][p] for k, v in state.items(): if isinstance(v, torch.Tensor): assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}' else: assert v == other_state[k] @parameterize('placement_policy', ['cuda', 'cpu']) def run_nested_model(placement_policy): get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) model, optim = init_zero(model_builder, placement_policy) set_seed(42) model_copy, optim_copy = init_zero(model_builder, placement_policy) model.train() model_copy.train() pg = ProcessGroup() set_seed(pg.dp_local_rank()) data_iter = iter(train_dataloader) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model, optim, criterion, data, label) optim_copy.load_state_dict(optim.state_dict()) check_state_dict_eq(optim.state_dict(), optim_copy.state_dict()) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model_copy, optim_copy, criterion, data, label) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_nested_model() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_sharded_optim_state_dist(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_state_dist(2)