import torch import torch.nn as nn import torch.distributed as dist import collections import inspect from colossalai.utils.model.colo_init_context import colo_state_dict def filter_dict(dict_to_filter, thing_with_kwargs): sig = inspect.signature(thing_with_kwargs) filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD] filter_dict = {} for filter_key in filter_keys: if filter_key in dict_to_filter: filter_dict[filter_key] = dict_to_filter[filter_key] return filter_dict def save_checkpoint(dire: str, epoch: int, model: torch.nn.Module, optimizer: torch.optim.Optimizer = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, *args, **kwargs): """save_checkpoint save a model, whose parameters are `ColoTensor`s. Args: dire (str): directory to save the checkpoint files. epoch (int): the number of epoch model (torch.nn.Module): a torch module initialized by ColoInitContext optimizer (torch.optim.Optimizer, optional): optimizers. Defaults to None. lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None. """ model_state = {'epoch': epoch, 'model': model.state_dict()} if dist.get_rank() == 0: torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch)) # TODO() If use tensor parallelism, optim_states contain SHARD ColoTensors. # 1. convert SHARD ColoTensor to REPLICATE # only rank 0 saves the REPLICATE tensors. optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict()} torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank())) def load_checkpoint(dire, epoch: int, rank: int, model: torch.nn.Module, optimizer: torch.optim.Optimizer = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, *args, **kwargs): """load_checkpoint load a model, whose parameters are `ColoTensor`s. Args: dire (_type_): _description_ epoch (int): _description_ rank (int): _description_ model (torch.nn.Module): _description_ optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None. lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None. """ model_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch)) model_state['model'] = collections.OrderedDict([(k.split('.', 1)[1], v) for k, v in model_state['model'].items()]) model.load_state_dict(model_state['model']) optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank)) optimizer.load_state_dict(optim_state['optimizer']) lr_scheduler_dict = optim_state['lr_scheduler'] if 'after_scheduler_type' in lr_scheduler_dict: after_scheduler_type = lr_scheduler_dict.pop('after_scheduler_type') after_scheduler_dict = lr_scheduler_dict.pop('after_scheduler_dict') reload_scheduler = getattr(torch.optim.lr_scheduler, after_scheduler_type) filtered_dict = filter_dict(after_scheduler_dict, reload_scheduler) lr_scheduler_dict['after_scheduler'] = reload_scheduler( optimizer, **filtered_dict, ) lr_scheduler.load_state_dict(lr_scheduler_dict)