import copy import os from functools import partial import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close from colossalai.elixir.cuda import gpu_device from colossalai.elixir.search import simple_search from colossalai.elixir.utils import init_distributed, seed_all from colossalai.elixir.wrapper import ElixirModule, ElixirOptimizer from colossalai.nn.optimizer import HybridAdam from colossalai.testing import run_on_environment_flag from tests.test_elixir.utils import TEST_MODELS, allclose, assert_dict_values, to_cuda def exam_optimizer_one_model(model_fn, data_fn, nproc, group, exam_seed=2261): ddp_model = model_fn().cuda() test_model = copy.deepcopy(ddp_model) ddp_model = DDP(ddp_model) ddp_optim = HybridAdam(ddp_model.parameters(), lr=1e-1, weight_decay=0) test_optim = HybridAdam(test_model.parameters(), lr=1e-1, weight_decay=0) sr = simple_search(test_model, nproc, shard_device=gpu_device()) test_model = ElixirModule(test_model, sr, group) test_optim = ElixirOptimizer(test_model, test_optim) # get different data seed_all(exam_seed + dist.get_rank(group)) data = to_cuda(data_fn()) seed_all(exam_seed, cuda_deterministic=True) ddp_optim.zero_grad() ddp_loss = ddp_model(**data) ddp_loss.backward() ddp_optim.step() test_optim.zero_grad() test_loss = test_model(**data) test_optim.backward(test_loss) test_optim.step() assert_close(ddp_loss, test_loss) torch_st = ddp_model.module.state_dict() test_st = test_model.state_dict() assert_dict_values(torch_st, test_st, fn=partial(allclose, rtol=2e-6, atol=2e-5)) def exam_optimizer_in_models(nproc, group): model_fn, data_fn = TEST_MODELS.get('resnet') exam_optimizer_one_model(model_fn, data_fn, nproc, group) def run_dist(rank, world_size): os.environ['RANK'] = str(rank) os.environ['LOCAL_RANK'] = str(rank) os.environ['WORLD_SIZE'] = str(world_size) os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = str(29512) init_distributed() exam_optimizer_in_models(nproc=world_size, group=dist.GroupMember.WORLD) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2, 4]) @run_on_environment_flag('ELX') def test_elixir_optimizer(world_size): run_func = partial(run_dist, world_size=world_size) torch.multiprocessing.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_elixir_optimizer(world_size=4)