# 基于Chunk内存管理的零冗余优化器 (ZeRO)

作者: [Hongxiu Liu](https://github.com/ver217), [Jiarui Fang](https://github.com/feifeibear), [Zijian Ye](https://github.com/ZijianYY)

**前置教程:**

- [定义配置文件](../basics/define_your_config.md)

**示例代码**

- [Train GPT with Colossal-AI](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/gpt)

**相关论文**

- [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054)
- [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)
- [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)
- [DeepSpeed: System Optimizations Enable Training Deep Learning Models with Over 100 Billion Parameters](https://dl.acm.org/doi/10.1145/3394486.3406703)
- [PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management](https://arxiv.org/abs/2108.05818)


## 引言

零冗余优化器 (ZeRO) 通过对三个模型状态(优化器状态、梯度和参数)进行划分而不是复制他们,消除了数据并行进程中的内存冗余。该方法与传统的数据并行相比,内存效率得到了极大的提高,而计算粒度和通信效率得到了保留。

1. **分片优化器状态**: 优化器状态 (如 [Adam optimizer](https://arxiv.org/abs/1412.6980), 32位的权重,
以及一二阶动量估计) 被划分到各个进程中, 因此每个进程只更新其分区。


2. **分片梯度**: 在梯度在数据并行进程组内进行 reduction 后, 梯度张量也被划分,这样每个进程只存储与其划分的优化器状态对应的梯度。 注意, Colossal-AI 将梯度转换为 FP32 格式以参与更新参数。

3. **分片参数**: 16位的模型参数被划分到一个数据并行组的进程中。

4. **[Gemini](../advanced_tutorials/meet_gemini.md)**: 对于参数、梯度、优化器状态的动态异构内存空间管理器。

此外,我们还将介绍基于Chunk内存管理的零冗余优化器。

在使用零冗余优化器 (ZeRO)时,我们通过切分参数的方式对模型进行分布式存储,这种方法的优点是每个节点的内存负载是完全均衡的。但是这种方式有很多缺点。首先,通信时需要申请一块临时内存用来通信,通信完毕释放,这回导致存在内存碎片化的问题。其次,以Tensor为粒度进行通信,会导致网络带宽无法充分利用。通常来说传输的消息长度越长带宽利用率越高。

利用ColossalAI v0.1.8引入了Chunk机制,我们可以提升ZeRO的性能。我们将运算顺序上连续的一组参数存入一个Chunk中(Chunk即一段连续的内存空间),每个Chunk的大小相同。Chunk方式组织内存可以保证PCI-e和GPU-GPU之间网络带宽的高效利用,减小了通信次数,同时避免潜在的内存碎片。

在v0.1.8之前,ZeRO在进行参数聚合时通信成本较高,如果一个参数在连续的几次计算中被使用多次,即会发生多次通信,效率较低。这种情况在使用Checkpoint时非常常见,参数在计算backward时会重计算一遍forward。这种情况下,ZeRO的效率便不高。

以GPT为例,其Checkpoint会应用在每一个GPT Block上,每一个GPT Block包含一个Self-Attention层和MLP层。在计算Backward时,会依次计算Self-Attention层、MLP层的forward,然后依次计算MLP层、Self-Attention层的backward。如使用Chunk机制,我们将Self-Attention层和MLP层放在同一个Chunk中,在每个GPT Block的backward的中便无需再通信。

除此之外,由于小Tensor的通信、内存移动没法完全利用NVLINK、PCIE带宽,而且每次通信、内存移动都有kernel launch的开销。使用了Chunk之后可以把多次小Tensor的通信、内存移动变为一次大Tensor的通信、内存移动,既提高了带宽利用,也减小了kernel launch的开销。

我们提供了轻量级的Chunk搜索机制,帮助用户自动找到内存碎片最小的Chunk尺寸。

## 使用

### GeminiDDP

我们将运用`GeminiDDP`的方式来使用基于Chunk内存管理的ZeRO。这是我们新包装的torch.Module ,它使用 ZeRO-DP 和 Gemini,其中ZeRO 用于并行,Gemini 用于内存管理。

同样需要确保你的模型是在 `ColoInitContext` 的上下文中初始化的。

```python
with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg):
  model = gpt2_medium(checkpoint=True)
```

定义模型参数如下:

```python
chunk_manager = init_chunk_manager(model=module,
                                   init_device=device,
                                   hidden_dim=hidden_dim,
                                   search_range_mb=search_range_mb,
                                   min_chunk_size_mb=min_chunk_size_mb)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager)
```

`hidden dim`是DNN的隐藏维度。用户可以提供这个参数来加快搜索速度。如果用户在训练前不知道这个参数也可以。 我们将使用默认值 1024。`min_chunk_size_mb`是以兆字节为单位的最小块大小。如果参数的总大小仍然小于最小块大小,则所有参数将被压缩为一个小块。

初始化优化器。
```python
optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5)
```

训练
```python
optimizer.zero_grad()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
optimizer.backward(loss)
optimizer.step()
```
> ⚠️ 注意:请不要使用`loss.backward()`,规范写法是`optimizer.backward(loss)`。

### 训练GPT

在此例程中, 我们使用 `Hugging Face Transformers`,并以 `GPT2 Medium` 为例。你必须在允许该例程前安装 `transformers`。

为了简单起见,我们在这里只使用随机生成的数据。

首先我们只需要引入`Huggingface transformers` 的 `GPT2LMHeadModel`来定义我们的模型,不需要用户进行模型的定义与修改,方便用户使用。

```python
class GPTLMModel(nn.Module):

    def __init__(self,
                 hidden_size=768,
                 num_layers=12,
                 num_attention_heads=12,
                 max_seq_len=1024,
                 vocab_size=50257,
                 checkpoint=False):
        super().__init__()
        self.checkpoint = checkpoint
        self.model = GPT2LMHeadModel(
            GPT2Config(n_embd=hidden_size,
                       n_layer=num_layers,
                       n_head=num_attention_heads,
                       n_positions=max_seq_len,
                       n_ctx=max_seq_len,
                       vocab_size=vocab_size))
        if checkpoint:
            self.model.gradient_checkpointing_enable()

    def forward(self, input_ids, attention_mask):
        return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]

def gpt2_medium(checkpoint=False):
    return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
```

定义损失函数:

```python
class GPTLMLoss(nn.Module):

    def __init__(self):
        super().__init__()
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, logits, labels):
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
```

定义张量并行和参数分片策略:

```python
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
    for mn, module in model.named_modules():
        for pn, param in module.named_parameters(recurse=False):
            if hasattr(param, 'visited'):
                continue
            param.set_dist_spec(ReplicaSpec())
            if 'mlp.c_fc' in mn:
                if 'weight' in pn or 'bias' in pn:
                    split_param_col_tp1d(param, pg)
                    param.compute_spec.set_output_replicate(False)
                else:
                    param.set_dist_spec(ReplicaSpec())
            elif 'mlp.c_proj' in mn:
                if 'weight' in pn:
                    split_param_row_tp1d(param, pg)
                else:
                    param.set_dist_spec(ReplicaSpec())
            elif 'wte' in mn or 'wpe' in mn:
                split_param_col_tp1d(param, pg)
            elif 'c_attn' in mn or 'c_proj' in mn:
                split_param_col_tp1d(param, pg)
            else:
                param.set_dist_spec(ReplicaSpec())

            param.visited = True
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
    spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
    param.set_tensor_spec(*spec)


def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
    split_param_single_dim_tp1d(0, param, pg)


def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
    split_param_single_dim_tp1d(-1, param, pg)
```

定义一个使用 Gemini + ZeRO DDP 的模型:

```python
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
    cai_version = colossalai.__version__
    if version.parse(cai_version) > version.parse("0.1.10"):
        from colossalai.nn.parallel import GeminiDDP
        model = GeminiDDP(model,
                          device=get_current_device(),
                          placement_policy=placememt_policy,
                          pin_memory=True,
                          search_range_mb=32)
    elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
        from colossalai.gemini import ChunkManager, GeminiManager
        chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
        gemini_manager = GeminiManager(placememt_policy, chunk_manager)
        chunk_manager = ChunkManager(chunk_size,
                                     pg,
                                     enable_distributed_storage=True,
                                 			init_device=GeminiManager.get_default_device(placememt_policy))
        model = ZeroDDP(model, gemini_manager)
    else:
        raise NotImplemented(f"CAI version {cai_version} is not supported")
    return model
```

由于我们在这个例子中对GPT进行预训练,因此只使用了一个简单的语言模型损失函数。

写一个获得随机输入的函数:

```python
def get_data(batch_size, seq_len, vocab_size):
    input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
    attention_mask = torch.ones_like(input_ids)
    return input_ids, attention_mask
```

最后,我们可以定义我们的训练循环:

```python
def main():
    args = parse_args()
    BATCH_SIZE = 8
    SEQ_LEN = 1024
    VOCAB_SIZE = 50257
    NUM_STEPS = 10
    colossalai.launch_from_torch(config={})

    # build criterion
    criterion = GPTLMLoss()

    torch.manual_seed(123)
    default_pg = ProcessGroup(tp_degree=args.tp_degree)
    default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
    # build GPT model
    with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg):
      model = gpt2_medium(checkpoint=True)
    pg = default_pg
    # Tensor Parallelism (TP)
    tensor_parallelize(model, pg)
    # Gemini + ZeRO DP, Note it must be used after TP
    model = gemini_zero_dpp(model, pg, args.placement)
    # build optimizer
    optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5)
    numel = sum([p.numel() for p in model.parameters()])
    get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
    torch.cuda.synchronize()
    model.train()
    for n in range(NUM_STEPS):
        # we just use randomly generated data here
        input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
        optimizer.zero_grad()
        outputs = model(input_ids, attn_mask)
        loss = criterion(outputs, input_ids)
        optimizer.backward(loss)
        optimizer.step()

    torch.cuda.synchronize()
```
> ⚠️ 注意:如果你使用Gemini模块的话,请不要使用我们之前提到过的[梯度累加](../features/gradient_accumulation.md)。
完整的例子代码可以在 [Train GPT with Colossal-AI](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/gpt). 获得。