"""This code is from NVIDIA apex: https://github.com/NVIDIA/apex with some changes. """ import numbers import torch from torch.cuda.amp import custom_bwd, custom_fwd from torch.nn import init from torch.nn.parameter import Parameter class FusedLayerNormAffineFunction(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input, weight, bias, normalized_shape, eps): try: import colossalai._C.layer_norm except ImportError: raise RuntimeError('FusedLayerNormAffineFunction requires cuda extensions') ctx.normalized_shape = normalized_shape ctx.eps = eps input_ = input.contiguous() weight_ = weight.contiguous() bias_ = bias.contiguous() output, mean, invvar = colossalai._C.layer_norm.forward_affine(input_, ctx.normalized_shape, weight_, bias_, ctx.eps) ctx.save_for_backward(input_, weight_, bias_, mean, invvar) return output @staticmethod @custom_bwd def backward(ctx, grad_output): try: import colossalai._C.layer_norm except ImportError: raise RuntimeError('FusedLayerNormAffineFunction requires cuda extensions') input_, weight_, bias_, mean, invvar = ctx.saved_tensors grad_input = grad_weight = grad_bias = None grad_input, grad_weight, grad_bias \ = colossalai._C.layer_norm.backward_affine( grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps) return grad_input, grad_weight, grad_bias, None, None class MixedFusedLayerNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None): super(MixedFusedLayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.weight = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype)) self.bias = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, input): return FusedLayerNormAffineFunction.apply(input, self.weight, self.bias, self.normalized_shape, self.eps) def __repr__(self): return f'MixedFusedLayerNorm(normalized_shape={self.normalized_shape}, eps={self.eps})'