# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron tokenizers.""" from abc import ABC, abstractmethod from colossalai.legacy.context import ParallelMode from colossalai.legacy.core import global_context as gpc from .bert_tokenization import FullTokenizer as FullBertTokenizer def build_tokenizer(vocab_file, tokenizer_type, vocab_extra_ids=0): """Initialize tokenizer.""" if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0: print("> building {} tokenizer ...".format(tokenizer_type), flush=True) # Select and instantiate the tokenizer. if tokenizer_type == "BertWordPieceLowerCase": tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file, lower_case=True, vocab_extra_ids=vocab_extra_ids) elif tokenizer_type == "BertWordPieceCase": tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file, lower_case=False, vocab_extra_ids=vocab_extra_ids) else: raise NotImplementedError("{} tokenizer is not " "implemented.".format(tokenizer_type)) # Add vocab size. padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size) return tokenizer, padded_vocab_size def _vocab_size_with_padding(orig_vocab_size, make_vocab_size_divisible_by=128): """Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.""" after = orig_vocab_size if gpc.is_initialized(ParallelMode.TENSOR): multiple = make_vocab_size_divisible_by * gpc.get_world_size(ParallelMode.TENSOR) else: multiple = make_vocab_size_divisible_by while (after % multiple) != 0: after += 1 if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0: print( " > padded vocab (size: {}) with {} dummy tokens " "(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after), flush=True, ) return after class AbstractTokenizer(ABC): """Abstract class for tokenizer.""" def __init__(self, name): self.name = name super().__init__() @property @abstractmethod def vocab_size(self): pass @property @abstractmethod def vocab(self): """Dictionary from vocab text token to id token.""" @property @abstractmethod def inv_vocab(self): """Dictionary from vocab id token to text token.""" @abstractmethod def tokenize(self, text): pass def detokenize(self, token_ids): raise NotImplementedError("detokenizer is not implemented for {} " "tokenizer".format(self.name)) @property def cls(self): raise NotImplementedError("CLS is not provided for {} " "tokenizer".format(self.name)) @property def sep(self): raise NotImplementedError("SEP is not provided for {} " "tokenizer".format(self.name)) @property def pad(self): raise NotImplementedError("PAD is not provided for {} " "tokenizer".format(self.name)) @property def eod(self): raise NotImplementedError("EOD is not provided for {} " "tokenizer".format(self.name)) @property def mask(self): raise NotImplementedError("MASK is not provided for {} " "tokenizer".format(self.name)) class _BertWordPieceTokenizer(AbstractTokenizer): """Original BERT wordpiece tokenizer.""" def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0): if lower_case: name = "BERT Lower Case" else: name = "BERT Upper Case" super().__init__(name) self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case) self.cls_id = self.tokenizer.vocab["[CLS]"] self.sep_id = self.tokenizer.vocab["[SEP]"] self.pad_id = self.tokenizer.vocab["[PAD]"] self.mask_id = self.tokenizer.vocab["[MASK]"] self._additional_special_tokens = [] # (dsachan) Add BOS and EOS tokens SPECIAL_TOKENS = {"eos_token": "[EOS]", "bos_token": "[BOS]"} self._bos_token = "[BOS]" self.add_token(self._bos_token) self._bos_token_id = self.vocab.get(self._bos_token) self._eos_token = "[EOS]" self.add_token(self._eos_token) self._eos_token_id = self.vocab.get(self._eos_token) # (dsachan) Add additional special tokens # These can be used as sentinel tokens in T5 model inputs additional_special_tokens = [] additional_special_tokens.extend(["".format(i) for i in range(vocab_extra_ids)]) self.add_additional_special_tokens(additional_special_tokens) def add_token(self, token): if token not in self.vocab: self.inv_vocab[self.vocab_size] = token # self.vocab_size comes from len(vocab) # and it will increase as we add elements self.vocab[token] = self.vocab_size def add_additional_special_tokens(self, tokens_list): setattr(self, "additional_special_tokens", tokens_list) for value in tokens_list: self.add_token(value) @property def vocab_size(self): return self.tokenizer.vocab_size() @property def vocab(self): return self.tokenizer.vocab @property def inv_vocab(self): return self.tokenizer.inv_vocab def tokenize(self, text): text_tokens = self.tokenizer.tokenize(text) return self.tokenizer.convert_tokens_to_ids(text_tokens) def decode(self, ids): tokens = self.tokenizer.convert_ids_to_tokens(ids) return self.tokenizer.convert_tokens_to_string(tokens) def decode_token_ids(self, token_ids): tokens = self.tokenizer.convert_ids_to_tokens(token_ids) exclude_list = ["[PAD]", "[CLS]"] non_pads = [t for t in tokens if t not in exclude_list] result = "" for s in non_pads: if s.startswith("##"): result += s[2:] else: result += " " + s return result @property def cls(self): return self.cls_id @property def sep(self): return self.sep_id @property def pad(self): return self.pad_id @property def mask(self): return self.mask_id @property def bos_token(self): """Beginning of sentence token id""" return self._bos_token @property def eos_token(self): """End of sentence token id""" return self._eos_token @property def additional_special_tokens(self): """All the additional special tokens you may want to use (list of strings).""" return self._additional_special_tokens @property def bos_token_id(self): """Id of the beginning of sentence token in the vocabulary.""" return self._bos_token_id @property def eos_token_id(self): """Id of the end of sentence token in the vocabulary.""" return self._eos_token_id @property def additional_special_tokens_ids(self): """Ids of all the additional special tokens in the vocabulary (list of integers).""" return [self.vocab.get(token) for token in self._additional_special_tokens] @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value