from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Union import torch import torch.cuda from torch.nn import Module from torch.utils._pytree import tree_map from colossalai.interface import ModelWrapper, OptimizerWrapper from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.utils.device import get_current_device from ._utils import ( detach, get_batch_size, get_micro_batch, merge_batch, model_forward, retain_grad, to_device, tree_map_hf, ) from .base import PipelineSchedule class OneForwardOneBackwardSchedule(PipelineSchedule): def __init__( self, stage_manager: PipelineStageManager, num_microbatches: Optional[int] = None, microbatch_size: Optional[int] = None, enable_metadata_cache: bool = True, ) -> None: """1F1B pipeline schedule. Args: stage_manager (PipelineStageManager): Pipeline stage manager num_microbatches (Optional[int], optional): The number of microbatches. If not provided, it will be derived from microbatch size. Defaults to None. microbatch_size (Optional[int], optional): Microbatch size. If num_microbatches is provided, this will be ignored. Defaults to None. """ super().__init__(stage_manager) assert ( num_microbatches is not None or microbatch_size is not None ), "Either num_microbatches or microbatch_size should be provided" self.comm = PipelineP2PCommunication(stage_manager) self.num_microbatches = num_microbatches self.microbatch_size = microbatch_size self.batch: Optional[Any] = None self.batch_size: Optional[int] = None self.last_batch_size: Optional[int] = None self.microbatch_offset: Optional[int] = None # P2PMeta cache self.enable_metadata_cache = enable_metadata_cache self.send_tensor_metadata = True self.send_grad_metadata = True self.tensor_metadata_recv = None self.grad_metadata_recv = None def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None: """Load a batch from data iterator. Args: data_iter (Iterable): Data iterator. device (Optional[torch.device], optional): Target device. Defaults to None. """ batch = next(data_iter) if device is not None: batch = tree_map(partial(to_device, device=device), batch) self.microbatch_offset = 0 self.batch = batch self.batch_size = get_batch_size(batch) if self.microbatch_size is None: assert self.batch_size % self.num_microbatches == 0, "Batch size should divided by # microbatches" self.microbatch_size = self.batch_size // self.num_microbatches if self.num_microbatches is None: assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size" self.num_microbatches = self.batch_size // self.microbatch_size if not self.forward_only: assert self.last_batch_size is None or self.last_batch_size == self.batch_size assert self.batch_size == self.microbatch_size * self.num_microbatches if self.forward_only: self.num_microbatches = (self.batch_size - 1) // self.microbatch_size + 1 # NOTE: disable metadata cache when batch size changes (not valid anymore) if self.batch_size != self.last_batch_size: self.enable_metadata_cache = False self.send_tensor_metadata = True self.send_grad_metadata = True self.tensor_metadata_recv = None self.grad_metadata_recv = None self.last_batch_size = self.batch_size def load_micro_batch(self) -> Any: """Load a micro batch from the current batch. Returns: Any: Micro batch. """ assert self.microbatch_offset <= self.batch_size, "Microbatches exhausted" micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size) self.microbatch_offset += self.microbatch_size return tree_map(partial(to_device, device=get_current_device()), micro_batch) def recv_forward(self, prev_rank: int = None) -> Any: """Copy the forward output from the previous stage in pipeline as the input tensor of this stage. For 1F1B. Args: prev_rank (int, optional): The rank of the source of the tensor. Returns: Any: The input tensor or input tensor list. """ if not self.stage_manager.is_first_stage(): input_tensor = self.comm.recv_forward(prev_rank, metadata_recv=self.tensor_metadata_recv) if self.enable_metadata_cache and self.tensor_metadata_recv is None: self.tensor_metadata_recv = create_send_metadata(input_tensor) return input_tensor def recv_backward(self, next_rank: int = None) -> Any: """Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage. For 1F1B. Args: next_rank (int, optional): The rank of the source of the tensor. Returns: Any: The input gradient tensor or gradient tensor list. """ if not self.stage_manager.is_last_stage(): output_tensor_grad = self.comm.recv_backward(next_rank, metadata_recv=self.grad_metadata_recv) if self.enable_metadata_cache and self.grad_metadata_recv is None: self.grad_metadata_recv = create_send_metadata(output_tensor_grad) return output_tensor_grad def send_forward(self, output_tensor: Any, next_rank: int = None) -> None: """Sends the input tensor to the next stage in pipeline. For 1F1B. Args: output_object (Any): Object to be sent. next_rank (int, optional): The rank of the recipient of the tensor. """ if not self.stage_manager.is_last_stage(): self.comm.send_forward(output_tensor, next_rank, send_metadata=self.send_tensor_metadata) self.send_tensor_metadata = not self.enable_metadata_cache def send_backward(self, input_tensor_grad: Any, prev_rank: int = None) -> None: """Sends the gradient tensor to the previous stage in pipeline. For 1F1B. Args: input_object (Any): Object to be sent. prev_rank (int, optional): The rank of the recipient of the tensor """ if not self.stage_manager.is_first_stage(): self.comm.send_backward(input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata) self.send_grad_metadata = not self.enable_metadata_cache def send_forward_recv_backward( self, output_tensor: Any, next_rank: int = None, send_prior_fallback: Optional[bool] = None ) -> Any: """Sends the input tensor to the next stage and copy the gradient tensor from the next stage in pipeline. For 1F1B. Args: output_object (Any): Object to be sent. next_rank (int, optional): The rank of the recipient of the tensor. """ if not self.stage_manager.is_last_stage(): if not self.send_tensor_metadata and self.grad_metadata_recv is not None: send_prior_fallback = None # must not fallback output_tensor_grad = self.comm.send_forward_recv_backward( output_tensor, next_rank, send_metadata=self.send_tensor_metadata, metadata_recv=self.grad_metadata_recv, send_prior_fallback=send_prior_fallback, ) self.send_tensor_metadata = not self.enable_metadata_cache if self.enable_metadata_cache and self.grad_metadata_recv is None: self.grad_metadata_recv = create_send_metadata(output_tensor_grad) return output_tensor_grad def send_backward_recv_forward( self, input_tensor_grad: Any, prev_rank: int = None, send_prior_fallback: Optional[bool] = None ) -> Any: """Sends the gradient tensor to the previous stage and copy the input tensor from the previous stage in pipeline. For 1F1B. Args: output_object (Any): Object to be sent. prev_rank (int, optional): The rank of the recipient of the tensor. """ if not self.stage_manager.is_first_stage(): if not self.send_grad_metadata and self.tensor_metadata_recv is not None: send_prior_fallback = None # must not fallback input_tensor = self.comm.send_backward_recv_forward( input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata, metadata_recv=self.tensor_metadata_recv, send_prior_fallback=send_prior_fallback, ) self.send_grad_metadata = not self.enable_metadata_cache if self.enable_metadata_cache and self.tensor_metadata_recv is None: self.tensor_metadata_recv = create_send_metadata(input_tensor) return input_tensor def forward_step( self, model: Module, input_obj: Optional[dict], criterion: Callable, accum_loss: Optional[torch.Tensor] = None, outputs: Optional[List[Any]] = None, ) -> Union[torch.Tensor, dict]: """Forward one step of the pipeline Args: model (Module): Model to be run input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None. criterion (Callable): Criterion to calculate loss. accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None. outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None. Returns: Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor). """ micro_batch = self.load_micro_batch() # for the first stage, input_obj is None # for the non-first stage, input_obj is the output of the previous stage and it's must be a dict output_obj = model_forward(model, micro_batch, input_obj) if self.stage_manager.is_last_stage(): loss = criterion(output_obj, micro_batch) / self.num_microbatches if accum_loss is not None: accum_loss.add_(loss.detach()) if outputs is not None: outputs.append(tree_map_hf(detach, output_obj)) return loss else: return output_obj def backward_step( self, optimizer: OptimizerWrapper, input_obj: Optional[dict], output_obj: Union[dict, torch.Tensor], output_obj_grad: Optional[dict], ) -> Optional[dict]: """Backward one step of the pipeline Args: optimizer (OptimizerWrapper): Optimizer to update the model input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None. output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor). output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None. Returns: Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None. """ # Retain the grad on the input_obj. tree_map(retain_grad, input_obj) # Backward pass. if output_obj_grad is None: optimizer.backward(output_obj) else: if "backward_tensor_keys" not in output_obj: for k, grad in output_obj_grad.items(): optimizer.backward_by_grad(output_obj[k], grad) else: for k, grad in output_obj_grad.items(): output_obj[k].grad = grad for k in output_obj["backward_tensor_keys"]: tensor_to_backward = output_obj[k] optimizer.backward_by_grad(tensor_to_backward, tensor_to_backward.grad) # Collect the grad of the input_obj. input_obj_grad = None if input_obj is not None: input_obj_grad = {} for k, v in input_obj.items(): if isinstance(v, torch.Tensor) and v.grad is not None: input_obj_grad[k] = v.grad return input_obj_grad def run_forward_only( self, model: Module, data_iter: Iterable, criterion: Callable[..., Any], return_loss: bool = False, return_outputs: bool = False, ) -> Dict: """ Runs forward only schedule, with communication between pipeline stages. """ assert self.forward_only self.load_batch(data_iter) accum_loss = None if return_loss and self.stage_manager.is_last_stage(): accum_loss = torch.scalar_tensor(0, device=get_current_device()) outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None for _ in range(self.num_microbatches): input_obj = self.recv_forward() output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) self.send_forward(output_obj) if outputs is not None: if isinstance(model, ModelWrapper): model = model.unwrap() outputs = merge_batch(outputs, getattr(model, "batch_size_dim", 0)) return {"loss": accum_loss, "outputs": outputs} def run_forward_backward( self, model: Module, data_iter: Iterable, criterion: Callable[..., Any], optimizer: Optional[OptimizerWrapper] = None, return_loss: bool = False, return_outputs: bool = False, ) -> Dict: """ Runs non-interleaved 1F1B schedule, with communication between pipeline stages. """ assert not self.forward_only self.load_batch(data_iter) # num_warmup_microbatches is the step when not all the processes are working num_warmup_microbatches = self.stage_manager.num_stages - self.stage_manager.stage - 1 num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches) num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches # Input, output tensors only need to be saved when doing backward passes input_objs, output_objs = [], [] accum_loss = None if return_loss and self.stage_manager.is_last_stage(): accum_loss = torch.scalar_tensor(0, device=get_current_device()) outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None # Run warmup forward passes. for i in range(num_warmup_microbatches): input_obj = self.recv_forward() output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) self.send_forward(output_obj) input_objs.append(input_obj) output_objs.append(output_obj) # Before running 1F1B, need to receive first forward tensor. # If all microbatches are run in warmup / cooldown phase, then no need to # receive this tensor here. if num_microbatches_remaining > 0: input_obj = self.recv_forward() # Run 1F1B in steady state. for i in range(num_microbatches_remaining): last_iteration = i == (num_microbatches_remaining - 1) output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) output_obj_grad = self.send_forward_recv_backward( output_obj, send_prior_fallback=self.stage_manager.stage % 2 == 0 ) # Add input_obj and output_obj to end of list. input_objs.append(input_obj) output_objs.append(output_obj) # Pop output_obj and output_obj from the start of the list for # the backward pass. input_obj = input_objs.pop(0) output_obj = output_objs.pop(0) input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad) if last_iteration: self.send_backward(input_obj_grad) else: input_obj = self.send_backward_recv_forward( input_obj_grad, send_prior_fallback=self.stage_manager.stage % 2 == 0 ) # Run cooldown backward passes. for i in range(num_warmup_microbatches): input_obj = input_objs.pop(0) output_obj = output_objs.pop(0) output_obj_grad = self.recv_backward() input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad) self.send_backward(input_obj_grad) assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs) if outputs is not None: if isinstance(model, ModelWrapper): model = model.unwrap() outputs = merge_batch(outputs, getattr(model, "batch_size_dim", 0)) return {"loss": accum_loss, "outputs": outputs} def forward_backward_step( self, model: Module, data_iter: Iterable, criterion: Callable[..., Any], optimizer: Optional[OptimizerWrapper] = None, return_loss: bool = False, return_outputs: bool = False, ) -> dict: """ Args: model (Module): Model to be trained. data_iter (Iterable): Data iterator. criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor. optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None. return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss. return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs. Returns: dict: Dictionary containing loss and outputs. """ self.forward_only = not torch.is_grad_enabled() if optimizer is None: assert self.forward_only, "Optimizer should be passed when doing backward." if self.forward_only: result = self.run_forward_only(model, data_iter, criterion, return_loss, return_outputs) else: result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs) return result