import pytest import torch import torch.distributed as dist import colossalai from colossalai.accelerator import get_accelerator from colossalai.moe import SparseMLP from colossalai.moe.manager import MOE_MANAGER from colossalai.testing import rerun_if_address_is_in_use, spawn BATCH_SIZE = 4 NUM_EXPERTS = 4 def check_equal(tensor_a, tensor_b, atol=1e-06): assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, topk=1): # Here we do not need TF32, since it brings absolute error on results torch.backends.cuda.matmul.allow_tf32 = False colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") local_rank = dist.get_rank() MOE_MANAGER.setup(parallel="EP") # MOE environment initialization MOE_MANAGER.reset_loss() torch.manual_seed(rs + local_rank) # set each process has different random seed # get randomized data tokens = torch.randn( BATCH_SIZE, hidden_size, dtype=data_type, device=get_accelerator().get_current_device(), requires_grad=True ) layer = SparseMLP( hidden_size=hidden_size, intermediate_size=hidden_size * 2, num_experts=NUM_EXPERTS, router_top_k=topk, router_capacity_factor_train=1.0, ) layer = layer.to(get_accelerator().get_current_device()) if data_type == torch.float16: layer = layer.half() # use matrix multiplication instead of COL_MOE_KERNEL in MOE dispatch and combine layer.enable_kernel = False old_out = layer(tokens) ech = old_out.shape grad = torch.randn(ech, device=get_accelerator().get_current_device()) old_out.backward(grad) # get gradient # save all results o_tk_grad = tokens.grad.data.clone() o_gt_grad = layer.gate_weight.grad.data.clone() # reset all gradients tokens.grad.zero_() layer.gate_weight.grad.zero_() layer.enable_kernel = True new_out = layer(tokens) # get outputs through colossal kernel if data_type == torch.float32: check_equal(old_out, new_out) else: check_equal(old_out, new_out, 1e-2) # forward function passed new_out.backward(grad) # get new type gradient n_tk_grad = tokens.grad.data.clone() n_gt_grad = layer.gate_weight.grad.data.clone() if data_type == torch.float32: check_equal(o_tk_grad, n_tk_grad) else: check_equal(o_tk_grad, o_tk_grad, 1e-2) # tokens gradient is correct if data_type == torch.float32: check_equal(o_gt_grad, n_gt_grad, 5e-05) else: check_equal(o_gt_grad, n_gt_grad, 2e-01) # bias gradient is correct @pytest.mark.dist @pytest.mark.parametrize("rs", [131]) @pytest.mark.parametrize("hidden_size", [32, 144]) @pytest.mark.parametrize("data_type", [torch.float32, torch.float16]) @pytest.mark.parametrize("topk", [1, 2]) @rerun_if_address_is_in_use() def test_moe_kernel(rs, hidden_size, data_type, topk): spawn(run_routing, 4, rs=rs, hidden_size=hidden_size, data_type=data_type, topk=topk) if __name__ == "__main__": test_moe_kernel(2, 256, torch.float16, 2)