import random import numpy as np import pytest import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig from colossalai.inference.core.rpc_engine import RPCInferenceEngine from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy from colossalai.testing import parameterize, rerun_if_address_is_in_use def setup_seed(seed): torch.manual_seed(seed) torch.random.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def check_inference_engine(tp_size, use_engine=False, prompt_template=None, do_sample=True, policy=None): setup_seed(20) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") model = "meta-llama/Llama-2-7b-hf" # remote mode path inputs = [ "介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,", "介绍一下武汉,", ] output_len = 38 top_p = 0.5 top_k = 50 if use_engine: inference_config = InferenceConfig( max_output_len=output_len, prompt_template=prompt_template, dtype="fp32", use_cuda_kernel=True, tp_size=tp_size, ) inference_engine = RPCInferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy) assert inference_engine.generation_config.max_new_tokens == output_len inference_engine.add_request(prompts=inputs) assert inference_engine.request_handler._has_waiting() generation_config = GenerationConfig( max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k ) outputs = inference_engine.generate(generation_config=generation_config) else: if prompt_template: # apply prompt template inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] model = AutoModelForCausalLM.from_pretrained(model).cuda() tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] inputs = inputs.cuda() generation_config = GenerationConfig( do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k, pad_token_id=tokenizer.pad_token_id, max_new_tokens=output_len, ) outputs = model.generate(inputs, generation_config=generation_config) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return outputs def run_engine(tp_size, **kwargs): return check_inference_engine(tp_size=tp_size, **kwargs) # TODO: fix the test @pytest.mark.skip("model is too large") @pytest.mark.largedist @parameterize("prompt_template", [None, "llama"]) @parameterize("do_sample", [False]) @rerun_if_address_is_in_use() def test_tp_engine(prompt_template, do_sample): if torch.multiprocessing.get_start_method(allow_none=True) is None: torch.multiprocessing.set_start_method("spawn") kwargs1 = { "use_engine": True, "prompt_template": prompt_template, "do_sample": do_sample, "policy": NoPaddingLlamaModelInferPolicy(), } kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None} colossal_tp_1_output = run_engine(1, **kwargs1) colossal_tp_2_output = run_engine(2, **kwargs1) transformer_tp_1_output = run_engine(1, **kwargs2) for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output): assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}" assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}" if __name__ == "__main__": torch.multiprocessing.set_start_method("spawn") # this code will not be ok for settings to fork to subprocess test_tp_engine()