from colossalai.context.singleton_meta import SingletonMeta import torch from typing import Tuple, Optional from colossalai.logging import DistributedLogger def colo_model_optimizer_usage(optim) -> Tuple[int, int]: """Trace the optimizer memory usage Args: optim (ShardedOptimV2): an instance of ShardedOptimver Returns: Tuple[int, int]: cuda/cpu memory usage in Byte """ if optim is None: return 0, 0 assert hasattr(optim, 'get_memory_usage'), f"{type(optim)} has no attr get_memory_usage()" return optim.get_memory_usage() def colo_model_mem_usage(model: torch.nn.Module) -> Tuple[int, int]: """ Trace the model memory usage. Args: model (torch.nn.Module): a torch model Returns: Tuple[int, int]: cuda memory usage in Byte, cpu memory usage in Byte """ if model is None: return 0, 0 def _get_tensor_mem_use(t: Optional[torch.Tensor]): if t is None: return 0, 0 assert isinstance(t, torch.Tensor) _cpu_mem_usage, _cuda_mem_usage = 0, 0 if t.device.type == 'cpu': _cpu_mem_usage += t.numel() * t.element_size() elif t.device.type == 'cuda': _cuda_mem_usage += t.numel() * t.element_size() return _cuda_mem_usage, _cpu_mem_usage cuda_mem_usage = 0 cpu_mem_usage = 0 for param in model.parameters(): if hasattr(param, 'colo_attr'): t_cuda, t_cpu = param.colo_attr.get_memory_usage() cuda_mem_usage += t_cuda cpu_mem_usage += t_cpu else: t_cuda, t_cpu = _get_tensor_mem_use(param.data) cuda_mem_usage += t_cuda cpu_mem_usage += t_cpu t_cuda, t_cpu = _get_tensor_mem_use(param.grad) cuda_mem_usage += t_cuda cpu_mem_usage += t_cpu return cuda_mem_usage, cpu_mem_usage class ModelDataTracer(metaclass=SingletonMeta): """ A tracer singleton to trace model data usage during runtime. You have to register a model on the singleton first. """ def __init__(self) -> None: self._logger = DistributedLogger("ModelDataTracer") self._model = None self._opitimizer = None def _get_mem_usage(self) -> Tuple[int, int]: """ get the memory usage of the model registered. Returns: Tuple[int, int]: cuda, cpu mem usage """ cuda_use_opt, cpu_use_opt = colo_model_optimizer_usage(self._opitimizer) cuda_use_model, cpu_use_model = colo_model_mem_usage(self._model) return cuda_use_opt + cuda_use_model, cpu_use_opt + cpu_use_model def register_model(self, model) -> None: if self._model is not None: self._logger.warning("ModelDataTracer has already registered a model") self._model = model def register_optimizer(self, optimizer) -> None: if self._opitimizer is not None: self._logger.warning("ModelDataTracer has already registered an optimizer") self._opitimizer = optimizer @property def cpu_usage(self): _, cpu_usage = self._get_mem_usage() return cpu_usage @property def cuda_usage(self): cuda_usage, _ = self._get_mem_usage() return cuda_usage @property def both_mem_usage(self): return self._get_mem_usage() GLOBAL_MODEL_DATA_TRACER = ModelDataTracer()