from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn.functional as F from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d, split_param_row_tp1d def run_with_spec(spec_init_func, split_bias): pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) model = torch.nn.Linear(4, 8).cuda() weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg)) bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg)) spec_init_func(weight, pg) if split_bias: spec_init_func(bias, pg) x = torch.rand(2, 4).cuda() out = model(x) colo_out = F.linear(x, weight, bias) colo_out = colo_out.to_replicate() assert tensor_equal(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) assert tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size()) def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=False) run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=True) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_linear_1d(4)