from typing import Any, Callable, Dict, Iterable, List, Tuple import torch from torch.fx.graph import ( CodeGen, PythonCode, _custom_builtins, _CustomBuiltin, _format_target, _is_from_torch, _Namespace, _origin_type_map, inplace_methods, magic_methods, ) from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg import colossalai from .chunk_region_search import ChunkRegionSearch from .utils import delete_free_var_from_last_use, find_idx_by_name, get_node_shape CODEGEN_AVAILABLE = True __all__ = ["AutoChunkCodeGen"] def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape): new_shape = "[" for idx, i in enumerate(shape): if idx == chunk_dim: new_shape += "%s:%s + chunk_size" % (chunk_idx_name, chunk_idx_name) else: new_shape += ":" new_shape += ", " new_shape = new_shape[:-2] + "]" return new_shape def _gen_loop_start(chunk_input, chunk_output, chunk_ouput_dim, chunk_size=2): input_node = chunk_input[0] out_shape = get_node_shape(chunk_output) out_str = str(list(out_shape)) context = ( "chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range" % (out_str, input_node.name, input_node.name, chunk_size) ) context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim]) return context def _gen_loop_end( chunk_inputs, chunk_non_compute_inputs, chunk_outputs, chunk_outputs_dim, node_list ): chunk_outputs_name = chunk_outputs.name chunk_outputs_idx = find_idx_by_name(chunk_outputs_name, node_list) chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape chunk_slice = _gen_chunk_slice_dim( chunk_outputs_dim, "chunk_idx", chunk_output_shape ) context = " chunk_result%s = %s; %s = None\n" % ( chunk_slice, chunk_outputs_name, chunk_outputs_name, ) context += ( chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None" ) # determine if its the last use for chunk input for chunk_input in chunk_inputs + chunk_non_compute_inputs: if all( [ find_idx_by_name(user.name, node_list) <= chunk_outputs_idx for user in chunk_input.users.keys() ] ): context += "; %s = None" % chunk_input.name context += "\n" return context def _replace_name(context, name_from, name_to): patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ","), (" ", ")")] for p in patterns: source = p[0] + name_from + p[1] target = p[0] + name_to + p[1] if source in context: context = context.replace(source, target) return context def _replace_reshape_size(context, node_name, reshape_size_dict): if node_name not in reshape_size_dict: return context for size_name, size_value in reshape_size_dict[node_name].items(): context = context.replace(size_name, size_value) return context def emit_code_with_chunk( body, nodes, emit_node_func, delete_unused_value_func, chunk_region_search, chunk_infos, ): """Emit code with nested activation checkpoint When we detect some of the node.activation_checkpoint is a List, we will use this function to emit the activation checkpoint codes. Args: body: forward code ckpt_func: checkpoint functions code nodes: graph.nodes emit_node_func: function to emit node delete_unused_value_func: function to remove the unused value """ node_list = list(nodes) chunk_regions = [i["region"] for i in chunk_infos] chunk_starts = [i[0] for i in chunk_regions] chunk_ends = [i[1] for i in chunk_regions] chunk_inputs = [i["inputs"] for i in chunk_infos] chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos] chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos] chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [ j.name for i in chunk_inputs_non_chunk for j in i ] chunk_outputs = [i["outputs"][0] for i in chunk_infos] chunk_outputs_dim = [i["outputs_dim"] for i in chunk_infos] node_list = chunk_region_search.index_tracer.reorder_node_list(node_list) node_idx = 0 region_idx = 0 within_chunk_region = False while node_idx < len(node_list): node = node_list[node_idx] if node_idx in chunk_starts: within_chunk_region = True region_idx = chunk_starts.index(node_idx) body.append( _gen_loop_start( chunk_inputs[region_idx], chunk_outputs[region_idx], chunk_outputs_dim[region_idx], chunk_infos[region_idx]["chunk_size"], ) ) if within_chunk_region: emit_node_func(node, body) # replace input var with chunk var for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]): for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items(): if idx == node_idx: chunk_slice = _gen_chunk_slice_dim( dim[0], "chunk_idx", get_node_shape(input_node) ) body[-1] = _replace_name( body[-1], input_node.name, input_node.name + chunk_slice ) # ones like if "ones_like" in node.name: meta_node = chunk_region_search.index_tracer.node_list[node_idx] chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node][ "chunk_dim" ] if get_node_shape(meta_node)[chunk_dim] != 1: source_node = meta_node.args[0].args[0] if ( source_node not in chunk_infos[region_idx]["node_chunk_dim"] or chunk_infos[region_idx]["node_chunk_dim"][source_node][ "chunk_dim" ] is None ): chunk_slice = _gen_chunk_slice_dim( chunk_dim, "chunk_idx", get_node_shape(node) ) body[-1] = _replace_name( body[-1], node.args[0].name, node.args[0].name + chunk_slice ) body[-1] = _replace_reshape_size( body[-1], node.name, chunk_infos[region_idx]["reshape_size"] ) body[-1] = " " + body[-1] delete_unused_value_func(node, body, chunk_inputs_names) else: emit_node_func(node, body) if node_idx not in chunk_inputs: delete_unused_value_func(node, body, chunk_inputs_names) if node_idx in chunk_ends: body.append( _gen_loop_end( chunk_inputs[region_idx], chunk_inputs_non_chunk[region_idx], chunk_outputs[region_idx], chunk_outputs_dim[region_idx], node_list, ) ) within_chunk_region = False node_idx += 1 if CODEGEN_AVAILABLE: class AutoChunkCodeGen(CodeGen): def __init__(self, meta_graph, max_memory=None): super().__init__() self.meta_graph = meta_graph self.max_memory = max_memory self.meta_node = list(meta_graph.graph.nodes) # find the chunk regions self.chunk_region_search = ChunkRegionSearch(meta_graph, max_memory) self.chunk_infos = self.chunk_region_search.search_region() def _gen_python_code( self, nodes, root_module: str, namespace: _Namespace ) -> PythonCode: free_vars: List[str] = [] body: List[str] = [] globals_: Dict[str, Any] = {} wrapped_fns: Dict[str, None] = {} # Wrap string in list to pass by reference maybe_return_annotation: List[str] = [""] def add_global(name_hint: str, obj: Any): """Add an obj to be tracked as a global. We call this for names that reference objects external to the Graph, like functions or types. Returns: the global name that should be used to reference 'obj' in generated source. """ if ( _is_from_torch(obj) and obj != torch.device ): # to support registering torch.device # HACK: workaround for how torch custom ops are registered. We # can't import them like normal modules so they must retain their # fully qualified name. return _get_qualified_name(obj) # normalize the name hint to get a proper identifier global_name = namespace.create_name(name_hint, obj) if global_name in globals_: assert globals_[global_name] is obj return global_name globals_[global_name] = obj return global_name # set _custom_builtins here so that we needn't import colossalai in forward _custom_builtins["colossalai"] = _CustomBuiltin( "import colossalai", colossalai ) # Pre-fill the globals table with registered builtins. for name, (_, obj) in _custom_builtins.items(): add_global(name, obj) def type_repr(o: Any): if o == (): # Empty tuple is used for empty tuple type annotation Tuple[()] return "()" typename = _type_repr(o) if hasattr(o, "__origin__"): # This is a generic type, e.g. typing.List[torch.Tensor] origin_type = _origin_type_map.get(o.__origin__, o.__origin__) origin_typename = add_global(_type_repr(origin_type), origin_type) if hasattr(o, "__args__"): # Assign global names for each of the inner type variables. args = [type_repr(arg) for arg in o.__args__] if len(args) == 0: # Bare type, such as `typing.Tuple` with no subscript # This code-path used in Python < 3.9 return origin_typename return f'{origin_typename}[{",".join(args)}]' else: # Bare type, such as `typing.Tuple` with no subscript # This code-path used in Python 3.9+ return origin_typename # Common case: this is a regular module name like 'foo.bar.baz' return add_global(typename, o) def _format_args( args: Tuple[Argument, ...], kwargs: Dict[str, Argument] ) -> str: def _get_repr(arg): # Handle NamedTuples (if it has `_fields`) via add_global. if isinstance(arg, tuple) and hasattr(arg, "_fields"): qualified_name = _get_qualified_name(type(arg)) global_name = add_global(qualified_name, type(arg)) return f"{global_name}{repr(tuple(arg))}" return repr(arg) args_s = ", ".join(_get_repr(a) for a in args) kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items()) if args_s and kwargs_s: return f"{args_s}, {kwargs_s}" return args_s or kwargs_s # Run through reverse nodes and record the first instance of a use # of a given node. This represents the *last* use of the node in the # execution order of the program, which we will use to free unused # values node_to_last_use: Dict[Node, Node] = {} user_to_last_uses: Dict[Node, List[Node]] = {} def register_last_uses(n: Node, user: Node): if n not in node_to_last_use: node_to_last_use[n] = user user_to_last_uses.setdefault(user, []).append(n) for node in reversed(nodes): map_arg(node.args, lambda n: register_last_uses(n, node)) map_arg(node.kwargs, lambda n: register_last_uses(n, node)) delete_free_var_from_last_use(user_to_last_uses) # NOTE: we add a variable to distinguish body and ckpt_func def delete_unused_values(user: Node, body, to_keep=[]): """ Delete values after their last use. This ensures that values that are not used in the remainder of the code are freed and the memory usage of the code is optimal. """ if user.op == "placeholder": return if user.op == "output": body.append("\n") return nodes_to_delete = user_to_last_uses.get(user, []) nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep] if len(nodes_to_delete): to_delete_str = " = ".join( [repr(n) for n in nodes_to_delete] + ["None"] ) body.append(f"; {to_delete_str}\n") else: body.append("\n") # NOTE: we add a variable to distinguish body and ckpt_func def emit_node(node: Node, body): maybe_type_annotation = ( "" if node.type is None else f" : {type_repr(node.type)}" ) if node.op == "placeholder": assert isinstance(node.target, str) maybe_default_arg = ( "" if not node.args else f" = {repr(node.args[0])}" ) free_vars.append( f"{node.target}{maybe_type_annotation}{maybe_default_arg}" ) raw_name = node.target.replace("*", "") if raw_name != repr(node): body.append(f"{repr(node)} = {raw_name}\n") return elif node.op == "call_method": assert isinstance(node.target, str) body.append( f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}" f"({_format_args(node.args[1:], node.kwargs)})" ) return elif node.op == "call_function": assert callable(node.target) # pretty print operators if ( node.target.__module__ == "_operator" and node.target.__name__ in magic_methods ): assert isinstance(node.args, tuple) body.append( f"{repr(node)}{maybe_type_annotation} = " f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}" ) return # pretty print inplace operators; required for jit.script to work properly # not currently supported in normal FX graphs, but generated by torchdynamo if ( node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods ): body.append( f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; " f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}" ) return qualified_name = _get_qualified_name(node.target) global_name = add_global(qualified_name, node.target) # special case for getattr: node.args could be 2-argument or 3-argument # 2-argument: attribute access; 3-argument: fall through to attrib function call with default value if ( global_name == "getattr" and isinstance(node.args, tuple) and isinstance(node.args[1], str) and node.args[1].isidentifier() and len(node.args) == 2 ): body.append( f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}" ) return body.append( f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})" ) if node.meta.get("is_wrapped", False): wrapped_fns.setdefault(global_name) return elif node.op == "call_module": assert isinstance(node.target, str) body.append( f"{repr(node)}{maybe_type_annotation} = " f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})" ) return elif node.op == "get_attr": assert isinstance(node.target, str) body.append( f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}" ) return elif node.op == "output": if node.type is not None: maybe_return_annotation[0] = f" -> {type_repr(node.type)}" body.append(self.generate_output(node.args[0])) return raise NotImplementedError(f"node: {node.op} {node.target}") # Modified for activation checkpointing ckpt_func = [] # if any node has a list of labels for activation_checkpoint, we # will use nested type of activation checkpoint codegen emit_code_with_chunk( body, nodes, emit_node, delete_unused_values, self.chunk_region_search, self.chunk_infos, ) if len(body) == 0: # If the Graph has no non-placeholder nodes, no lines for the body # have been emitted. To continue to have valid Python code, emit a # single pass statement body.append("pass\n") if len(wrapped_fns) > 0: wrap_name = add_global("wrap", torch.fx.wrap) wrap_stmts = "\n".join( [f'{wrap_name}("{name}")' for name in wrapped_fns] ) else: wrap_stmts = "" if self._body_transformer: body = self._body_transformer(body) for name, value in self.additional_globals(): add_global(name, value) # as we need colossalai.utils.checkpoint, we need to import colossalai # in forward function prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0]) prologue = "".join(ckpt_func) + prologue prologue = prologue code = "".join(body) code = "\n".join(" " + line for line in code.split("\n")) fn_code = f""" {wrap_stmts} {prologue} {code}""" # print(fn_code) return PythonCode(fn_code, globals_)