import time
import pytest
import argparse
from functools import partial

import torch
from torch.utils._pytree import tree_map
import torch.multiprocessing as mp

import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.fx.profiler import parameter_size
from colossalai.utils import free_port, get_current_device
from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer
from colossalai.auto_parallel.offload.mem_optimize import memory_optimize
from colossalai.auto_parallel.offload.solver import NOT_NVML
from model_zoo import get_gpt2_components, GPTLMLoss

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type', type=str, default="gpt2_medium")
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--solver_type', type=str, default='asyn')
    parser.add_argument('--memory_budget', type=float, default=16)
    return parser.parse_args()

@pytest.mark.skipif(NOT_NVML, reason='pynvml is not installed')
def train_gpt(args):
    memory_budget = args.memory_budget * 1024 * 1024 * 1024
    solver_type = args.solver_type
    model_type = args.model_type
    batch_size = args.batch_size

    # build model
    model_builder, data_gen = get_gpt2_components(model_type=model_type, batch_size=batch_size)
    label = torch.randint(low=0, high=128, size=(64, 8,), device=get_current_device())
    criterion = GPTLMLoss()

    start_time = time.time()
    model = model_builder()
    model.train()
    param_size = parameter_size(model) / 1024 ** 2 / 2
    init_time = time.time() - start_time
    print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s")

    data_args = data_gen(device="cpu")
    wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
    data_args = tree_map(wrap_fn, data_args)
    start_time = time.time()
    model = memory_optimize(model, data_args, memory_budget, solver_type)
    solver_time = time.time() - start_time
    print(f"solver_time={solver_time:.3f} s")

    hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3)
    optim = AMPOptimizer(hybrid_optimizer, model)

    torch.cuda.empty_cache()
    torch.cuda.synchronize()
    torch.cuda.reset_peak_memory_stats()

    time_list = []
    data_args = data_gen(device="cuda")
    data_args = tree_map(wrap_fn, data_args)
    for step in range(10):
        optim.zero_grad()
        torch.cuda.synchronize()
        start_time = time.time()
        loss = criterion(model(**data_args), label)
        optim.backward(loss)
        torch.cuda.synchronize()
        time_list.append(time.time() - start_time)
        optim.step()

    torch.cuda.synchronize()

    exec_time = sum(sorted(time_list)[:5]) / 5
    runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024 ** 2
    runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024 ** 2
    print(f'solver_type: {solver_type} | model_type: {model_type}')
    print(
        f'| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB '
        f'| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|'
    )
    print(time_list)

def run(rank, world_size, port, args):
    config = {}
    colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
    train_gpt(args)

if __name__ == '__main__':
    args = parse_args()
    run_func = partial(run, world_size=1, port=free_port(), args=args)
    mp.spawn(run_func, nprocs=1)