import os import torch from titans.model.vit.vit import _create_vit_model from tqdm import tqdm import colossalai from colossalai.legacy.context import ParallelMode from colossalai.legacy.core import global_context as gpc from colossalai.legacy.nn import CrossEntropyLoss from colossalai.legacy.pipeline.pipelinable import PipelinableContext from colossalai.logging import get_dist_logger from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR from colossalai.utils import is_using_pp class DummyDataloader: def __init__(self, length, batch_size): self.length = length self.batch_size = batch_size def generate(self): data = torch.rand(self.batch_size, 3, 224, 224) label = torch.randint(low=0, high=10, size=(self.batch_size,)) return data, label def __iter__(self): self.step = 0 return self def __next__(self): if self.step < self.length: self.step += 1 return self.generate() else: raise StopIteration def __len__(self): return self.length def main(): # launch from torch parser = colossalai.legacy.get_default_parser() args = parser.parse_args() colossalai.legacy.launch_from_torch(config=args.config) # get logger logger = get_dist_logger() logger.info("initialized distributed environment", ranks=[0]) if hasattr(gpc.config, "LOG_PATH"): if gpc.get_global_rank() == 0: log_path = gpc.config.LOG_PATH if not os.path.exists(log_path): os.mkdir(log_path) logger.log_to_file(log_path) use_pipeline = is_using_pp() # create model model_kwargs = dict( img_size=gpc.config.IMG_SIZE, patch_size=gpc.config.PATCH_SIZE, hidden_size=gpc.config.HIDDEN_SIZE, depth=gpc.config.DEPTH, num_heads=gpc.config.NUM_HEADS, mlp_ratio=gpc.config.MLP_RATIO, num_classes=10, init_method="jax", checkpoint=gpc.config.CHECKPOINT, ) if use_pipeline: pipelinable = PipelinableContext() with pipelinable: model = _create_vit_model(**model_kwargs) pipelinable.to_layer_list() pipelinable.policy = "uniform" model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE)) else: model = _create_vit_model(**model_kwargs) # count number of parameters total_numel = 0 for p in model.parameters(): total_numel += p.numel() if not gpc.is_initialized(ParallelMode.PIPELINE): pipeline_stage = 0 else: pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE) logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}") # use synthetic dataset # we train for 10 steps and eval for 5 steps per epoch train_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE) test_dataloader = DummyDataloader(length=5, batch_size=gpc.config.BATCH_SIZE) # create loss function criterion = CrossEntropyLoss(label_smoothing=0.1) # create optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY) # create lr scheduler lr_scheduler = CosineAnnealingWarmupLR( optimizer=optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=gpc.config.WARMUP_EPOCHS ) # initialize engine, train_dataloader, test_dataloader, _ = colossalai.initialize( model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader, test_dataloader=test_dataloader, ) logger.info("Engine is built", ranks=[0]) for epoch in range(gpc.config.NUM_EPOCHS): # training engine.train() data_iter = iter(train_dataloader) if gpc.get_global_rank() == 0: description = "Epoch {} / {}".format(epoch, gpc.config.NUM_EPOCHS) progress = tqdm(range(len(train_dataloader)), desc=description) else: progress = range(len(train_dataloader)) for _ in progress: engine.zero_grad() engine.execute_schedule(data_iter, return_output_label=False) engine.step() lr_scheduler.step() gpc.destroy() if __name__ == "__main__": main()