import argparse def parse_demo_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_name_or_path", type=str, default="google/vit-base-patch16-224", help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--output_path", type=str, default="./output_model", help="The path of your saved model after finetuning." ) parser.add_argument( "--plugin", type=str, default="gemini", help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.", ) parser.add_argument("--num_epoch", type=int, default=3, help="Number of epochs.") parser.add_argument( "--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader." ) parser.add_argument( "--tp_size", type=int, default=1, help="The size along tensor parallel dimension, only be used when enabling hybrid parallel.", ) parser.add_argument( "--pp_size", type=int, default=1, help="The size along pipeline parallel dimension, only be used when enabling hybrid parallel.", ) parser.add_argument( "--learning_rate", type=float, default=3e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--warmup_ratio", type=float, default=0.3, help="Ratio of warmup steps against total training steps." ) parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay to use.") parser.add_argument("--grad_checkpoint", type=bool, default=True, help="Whether to use gradient checkpointing.") parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") args = parser.parse_args() return args def parse_benchmark_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_name_or_path", type=str, default="google/vit-base-patch16-224", help="Path to a pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--plugin", type=str, default="gemini", help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.", ) parser.add_argument( "--batch_size", type=int, default=8, help="Batch size (per dp group) for the training dataloader." ) parser.add_argument("--num_labels", type=int, default=10, help="Number of labels for classification.") parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--grad_checkpoint", type=bool, default=True, help="Whether to use gradient checkpointing.") parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.") parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).") args = parser.parse_args() return args