#!/usr/bin/env python # -*- encoding: utf-8 -*- import pytest import torch from torch.fx import symbolic_trace from colossalai.core import global_context as gpc from colossalai.fx.passes import column_shard_linear_pass from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) return x CONFIG = dict(parallel=dict(tensor=dict(mode='1d', size=2))) def check_layer(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') input_tensor = torch.rand(2, 16).cuda() model = MLP(16).cuda() symbolic_traced = symbolic_trace(model) output = model(input_tensor) splitted_gm = column_shard_linear_pass(symbolic_traced) new_output = splitted_gm(input_tensor) assert output.equal(new_output) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @clear_cache_before_run() @rerun_if_address_is_in_use() def test_1d(): spawn(check_layer, 2) if __name__ == '__main__': test_1d()