from torch.optim.lr_scheduler import _LRScheduler from colossalai.registry import LR_SCHEDULERS @LR_SCHEDULERS.register_module class LinearWarmupLR(_LRScheduler): """Linearly warmup learning rate and then linearly decay :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: Number of total training steps :type total_steps: int :param warmup_steps: Number of warmup steps, defaults to 0 :type warmup_steps: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs): self.warmup_steps = warmup_steps self.total_steps = total_steps super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): if self.last_epoch < self.warmup_steps: return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs] else: return [(self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in self.base_lrs]