import os import pytest import torch import torch.distributed as dist from transformers import LlamaForCausalLM from utils import shared_tempdir import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin from colossalai.lazy import LazyInitContext from colossalai.nn.optimizer import HybridAdam from colossalai.testing import ( check_state_dict_equal, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo MODEL_PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.5}, ] OPTIM_PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half ] @clear_cache_before_run() @parameterize("placement_config", MODEL_PLACEMENT_CONFIGS) @parameterize("model_name", ["transformers_bert_for_sequence_classification"]) @parameterize("use_safetensors", [False, True]) @parameterize("tp_size", [1, 2]) @parameterize("zero_size", [2]) def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool, tp_size: int, zero_size: int): from transformers import BertForSequenceClassification (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) bert_model = model_fn() enable_flash_attention = True if tp_size > 1 else False enable_fused_normalization = True if tp_size > 1 else False enable_jit_fused = True if tp_size > 1 else False with shared_tempdir() as tempdir: pretrained_path = os.path.join(tempdir, "pretrained") bert_model.config.save_pretrained(save_directory=pretrained_path) extra_dp_size = dist.get_world_size() // (zero_size * tp_size) plugin = GeminiPlugin( **placement_config, tp_size=tp_size, enable_flash_attention=enable_flash_attention, enable_fused_normalization=enable_fused_normalization, enable_jit_fused=enable_jit_fused, extra_dp_size=extra_dp_size, ) booster = Booster(plugin=plugin) bert_model, _, _, _, _ = booster.boost(bert_model) model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 booster.save_model( bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors, ) dist.barrier() new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict()) @clear_cache_before_run() @parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS) @parameterize("shard", [True, False]) @parameterize("model_name", ["transformers_llama_for_causal_lm"]) @parameterize("size_per_shard", [32]) @parameterize("tp_size", [1, 2]) @parameterize("zero_size", [2]) def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int, tp_size: int, zero_size: int): (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) criterion = lambda x: x.mean() enable_flash_attention = True if tp_size > 1 else False enable_fused_normalization = True if tp_size > 1 else False enable_jit_fused = True if tp_size > 1 else False extra_dp_size = dist.get_world_size() // (zero_size * tp_size) plugin = GeminiPlugin( **placement_config, precision="fp16", initial_scale=(2**14), tp_size=tp_size, extra_dp_size=extra_dp_size, enable_flash_attention=enable_flash_attention, enable_fused_normalization=enable_fused_normalization, enable_jit_fused=enable_jit_fused, ) booster = Booster(plugin=plugin) model = model_fn() new_model = model_fn() optimizer = HybridAdam(model.parameters(), lr=0.001) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) new_optimizer = HybridAdam(new_model.parameters(), lr=0.01) new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) data = data_gen_fn() data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()} output = model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, optimizer) optimizer.step() for group in optimizer.param_groups: group["lr"] = 0.1 with shared_tempdir() as tempdir: model_ckpt_path = f"{tempdir}/model" optimizer_ckpt_path = f"{tempdir}/optimizer" booster.save_model( model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard, ) booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard) dist.barrier() booster.load_model(new_model, model_ckpt_path) check_state_dict_equal( model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), ignore_dtype=True ) booster.load_optimizer(new_optimizer, optimizer_ckpt_path) check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False)) for group in new_optimizer.param_groups: assert group["lr"] == 0.1 # Check the new model/optimizer can successfully run. data = data_gen_fn() data = { k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items() } output = new_model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, new_optimizer) new_optimizer.step() booster.save_model(new_model, model_ckpt_path, shard=shard) booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard) def exam_lazy_from_pretrained(): llama_path = os.environ["LLAMA_PATH"] plugin = GeminiPlugin() booster = Booster(plugin=plugin) orig_model = LlamaForCausalLM.from_pretrained(llama_path) orig_state_dict = {k: v.half() for k, v in orig_model.state_dict().items()} with LazyInitContext(): model = LlamaForCausalLM.from_pretrained(llama_path) model, *_ = booster.boost(model) with shared_tempdir() as tempdir: save_path = os.path.join(tempdir, "model.pt") booster.save_model(model, save_path, shard=False) dist.barrier() state_dict = torch.load(save_path, map_location="cpu") check_state_dict_equal(state_dict, orig_state_dict, ignore_dtype=True) def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_state_dict() exam_state_dict_with_origin() exam_lazy_from_pretrained() @pytest.mark.dist @rerun_if_address_is_in_use() def test_gemini_ckpIO(): spawn(run_dist, 4) if __name__ == "__main__": test_gemini_ckpIO()