import math import torch import torch.distributed as dist import pytest import colossalai import torch.multiprocessing as mp from torch.distributed.distributed_c10d import _get_default_group from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import dist_spec, DistSpecManager from functools import partial def run(): group = _get_default_group() rank = dist.get_rank() size = dist.get_world_size() depth = int(math.sqrt(size)) assert depth == math.sqrt(size) x = torch.rand(8, 8).cuda() old_dist_spec = dist_spec.replicate() row_spec = dist_spec.shard(group, [0], [size]) col_spec = dist_spec.shard(group, [-1], [size]) mat_spec = dist_spec.shard(group, [0, 1], [depth, depth]) row_shard = DistSpecManager._shard_as(x, old_dist_spec, row_spec) assert torch.equal(x.chunk(size, 0)[rank], row_shard) assert torch.equal(x, DistSpecManager._gather(row_shard, row_spec)) col_shard = DistSpecManager._shard_as(x, old_dist_spec, col_spec) assert torch.equal(x.chunk(size, -1)[rank], col_shard) assert torch.equal(x, DistSpecManager._gather(col_shard, col_spec)) mat_shard = DistSpecManager._shard_as(x, old_dist_spec, mat_spec) assert torch.equal(x.chunk(depth, 0)[rank // depth].chunk(depth, 1)[rank % depth], mat_shard) assert torch.equal(x, DistSpecManager._gather(mat_shard, mat_spec)) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_dist_spec_mgr(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_dist_spec_mgr(4)