import torch from typing import Union from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.nn.layer.parallel_1d._utils import reduce_input, reduce_grad from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor from colossalai.tensor import dist_spec def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float], alpha: Union[int, float]) -> ColoTensor: parallel_action = mat2.spec.get_action_by_compute_pattern(ComputePattern.TP1D) # mat1:S[1] x mat2:S[0] = Output:P # beta * input + alpha * All-Reduce(Output) = res mat1.to_dist_spec(dist_spec.shard(mat2.spec.get_process_group(), [-1], [mat2.spec.get_process_group().size()])) # Output:P partial_output = torch.mm(mat1.torch_tensor(), mat2.torch_tensor()) # Reduce(Output) output = reduce_input(partial_output, parallel_action.parallel_mode) # input assert not input_tensor.has_spec(), 'Invalid input spec for 1Drow addmm op' output = beta * input_tensor.torch_tensor() + alpha * output output = ColoTensor.init_from_torch_tensor(output, spec=TensorSpec(dist_spec.replicate(mat2.spec.get_process_group()))) return output def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float], alpha: Union[int, float]) -> ColoTensor: # mat1:B x mat2:S[1] + input:S[1] = Output:S[1] parallel_action = mat2.spec.get_action_by_compute_pattern(ComputePattern.TP1D) mat1.to_dist_spec(dist_spec.replicate(mat2.spec.get_process_group())) mat1_torch_tensor = reduce_grad(mat1.torch_tensor(), parallel_action.parallel_mode) output_parallel = torch.addmm(input_tensor.torch_tensor(), mat1_torch_tensor, mat2.torch_tensor(), beta=beta, alpha=alpha) output_spec = TensorSpec( dist_spec.shard(mat2.spec.get_process_group(), [-1], [mat2.spec.get_process_group().size()]), [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)]) output = ColoTensor.init_from_torch_tensor(output_parallel, spec=output_spec) if parallel_action.gather_out: # All-Gather(Output) output.to_dist_spec(dist_spec.replicate(mat2.spec.get_process_group())) return output @colo_op_impl(torch.addmm) def colo_addmm(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor, mat1, mat2 = args[:3] to_colo_tensor = lambda t: t if isinstance(t, ColoTensor) else ColoTensor.init_from_torch_tensor(t) input_tensor = to_colo_tensor(input_tensor) mat2 = to_colo_tensor(mat2) beta = kwargs.get('beta', 1) if kwargs else 1 alpha = kwargs.get('alpha', 1) if kwargs else 1 # building the computing graph, inputs -> op # if GraphGlobalEnv().graph_building: # cur_op_node = GraphOpNode('linear', [weight, bias]) # cur_op_node.add_prev_tensor(input_tensor) # Add communication logic before and after linear call. ret_tensor = None if not mat2.has_spec(): # No Model Parallel Applied assert mat2.spec.is_gathered(), 'Invalid mat2 spec for native addmm op' assert input_tensor.spec.is_gathered(), 'Invalid input spec for native addmm op' ret_tensor = ColoTensor.init_from_torch_tensor( torch.addmm(input_tensor.torch_tensor(), mat1, mat2.torch_tensor(), beta=beta, alpha=alpha)) elif mat2.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied spec = TensorSpec(dist_spec.replicate(mat2.spec.get_process_group())) mat1 = args[1] if isinstance(args[1], ColoTensor) else ColoTensor.init_from_torch_tensor(args[1], spec=spec) if mat2.spec.is_1D_row() and input_tensor.spec.is_gathered(): ret_tensor = colo_addmm_1Drow(input_tensor, mat1, mat2, beta, alpha) elif mat2.spec.is_1D_col() and (input_tensor.spec.is_1D_col() or input_tensor.spec.is_1D_row()): ret_tensor = colo_addmm_1Dcol(input_tensor, mat1, mat2, beta, alpha) else: raise NotImplementedError else: raise NotImplementedError # building the computing graph, op -> output # if GraphGlobalEnv().graph_building: # cur_op_node.add_post_tensor(ret_tensor) return ret_tensor