#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import torch.distributed as dist from colossalai.context import Config from colossalai.global_variables import tensor_parallel_env as env from colossalai.registry import DIST_GROUP_INITIALIZER from ..parallel_mode import ParallelMode from .process_group_initializer import ProcessGroupInitializer def _check_tesseract_env_var(tesseract_dim: int, tesseract_dep: int): # check global variable for TESSERACT env_tesseract_dim = env.tesseract_dim env_tesseract_dep = env.tesseract_dep if env_tesseract_dim and env_tesseract_dep: assert int(env_tesseract_dim) == tesseract_dim, \ 'TESSERACT_DIM has been set in the current environment and ' \ 'does not match with the value passed to this initialized' assert int(env_tesseract_dep) == tesseract_dep, \ 'TESSERACT_DEP has been set in the current environment and ' \ 'does not match with the value passed to this initialized' else: env.tesseract_dim = tesseract_dim env.tesseract_dep = tesseract_dep # i row j col k dep class Initializer_2p5D_ROW(ProcessGroupInitializer): """2.5d tensor parallel initialization among rows. Args: tesseract_dim (int): The dimension of tesseract. tesseract_dep (int): The dimension of depth. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, tesseract_dim: int, tesseract_dep: int, *args): super(Initializer_2p5D_ROW, self).__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.tesseract_dep = tesseract_dep self.tesseract_dim = tesseract_dim assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \ "Tensor parallel size should be depth * dim ** 2 in 2.5D parallel" def init_dist_group(self): """Initialize 2.5D tensor row parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 2.5D tensor row parallelism's information in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_2P5D_ROW for h in range(self.num_group): for j in range(self.tesseract_dim): for k in range(self.tesseract_dep): ranks = [ h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k) for i in range(self.tesseract_dim) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_2p5D_Col(ProcessGroupInitializer): """2.5d tensor parallel initialization among cols. Args: tesseract_dim (int): The dimension of tesseract. tesseract_dep (int): The dimension of depth. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, tesseract_dim: int, tesseract_dep: int, *args): super(Initializer_2p5D_Col, self).__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.tesseract_dep = tesseract_dep self.tesseract_dim = tesseract_dim assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \ "Tensor parallel size should be depth * dim ** 2 in 2.5D parallel" def init_dist_group(self): """Initialize 2.5D tensor col parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 2.5D tensor col parallelism's information in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_2P5D_COL for h in range(self.num_group): for i in range(self.tesseract_dim): for k in range(self.tesseract_dep): ranks = [ h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k) for j in range(self.tesseract_dim) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_2p5D_Dep(ProcessGroupInitializer): """2.5D tensor parallel initialization among depths. Args: tesseract_dim (int): The dimension of tesseract. tesseract_dep (int): The dimension of depth. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, tesseract_dim: int, tesseract_dep: int, *args): super(Initializer_2p5D_Dep, self).__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.tesseract_dep = tesseract_dep self.tesseract_dim = tesseract_dim assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \ "Tensor parallel size should be depth * dim ** 2 in 2.5D parallel" def init_dist_group(self): """Initialize 2.5D tensor depth parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 2.5D tensor depth parallelism's information in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_2P5D_DEP for h in range(self.num_group): for i in range(self.tesseract_dim): for j in range(self.tesseract_dim): ranks = [ h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k) for k in range(self.tesseract_dep) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode # i row j col k dep class Initializer_2p5D_XZ(ProcessGroupInitializer): """2.5d tensor parallel initialization among cols times dep. Args: tesseract_dim (int): The dimension of tesseract. tesseract_dep (int): The dimension of depth. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, tesseract_dim: int, tesseract_dep: int, *args): super(Initializer_2p5D_XZ, self).__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.tesseract_dep = tesseract_dep self.tesseract_dim = tesseract_dim assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \ "Tensor parallel size should be depth * dim ** 2 in 2.5D parallel" def init_dist_group(self): """Initialize 2.5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 2.5D tensor colXdepth parallelism's information in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_2P5D_XZ for h in range(self.num_group): for i in range(self.tesseract_dim): ranks = [ h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k) for k in range(self.tesseract_dep) for j in range(self.tesseract_dim) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode @DIST_GROUP_INITIALIZER.register_module class Initializer_2p5D(ProcessGroupInitializer): """ Serve as the single entry point to Tesseract parallel initialization. Args: rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. depth (int): The depth of 2.5d parallel. """ def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int, tensor_parallel_size: int, depth: int): args = (rank, world_size, config, data_parallel_size, pipeline_parallel_size, tensor_parallel_size) super().__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth)) self.tesseract_dep = depth assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \ "2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5" _check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep) self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args) self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args) self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args) self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args) def init_dist_group(self): """Initialize 2.5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu. Returns: List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]: Whole 2.5D tensor parallelism's information in a list of tuples. """ parallel_setting = [ self.col_initializer.init_dist_group(), self.row_initializer.init_dist_group(), self.dep_initializer.init_dist_group(), self.xz_initializer.init_dist_group() ] return parallel_setting