from functools import partial import pytest import torch.nn as nn import torch.multiprocessing as mp import torch.distributed as dist import colossalai from colossalai.utils import free_port, get_current_device from colossalai.nn.layer.moe import Experts from colossalai.context.moe_context import MOE_CONTEXT from colossalai.utils.moe import sync_moe_model_param from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use D_MODEL = 4 D_FF = 8 CONFIG = dict() def run_test(rank, port): world_size = 4 colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') expert_module = nn.Linear expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device()) MOE_CONTEXT.setup(42) # MOE environment initialization exp0 = Experts(expert_module, 1, **expert_factor) exp1 = Experts(expert_module, 2, **expert_factor) exp2 = Experts(expert_module, 4, **expert_factor) exp3 = Experts(expert_module, 8, **expert_factor) assert exp0.num_local_experts == 1 assert exp1.num_local_experts == 1 assert exp2.num_local_experts == 1 assert exp3.num_local_experts == 2 # experts deployment passed parallel_info_dict = MOE_CONTEXT.parallel_info_dict rank = dist.get_rank() assert len(parallel_info_dict) == 3 assert dist.get_rank(parallel_info_dict[4].ep_group) == rank assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2 assert dist.get_rank(parallel_info_dict[1].ep_group) == 0 assert dist.get_rank(parallel_info_dict[4].dp_group) == 0 assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2 assert dist.get_rank(parallel_info_dict[1].dp_group) == rank # group creation passed model = nn.ModuleList([exp0, exp1, exp2, exp3]) model = model.to(get_current_device()) sync_moe_model_param(model) assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group) assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group) # MOE experts layout success when ep_size = 1 assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group) assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group) # MOE experts layout success when ep_size = 2 @pytest.mark.dist @rerun_if_address_is_in_use() def test_moe_initialization(): world_size = 4 run_func = partial(run_test, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_initialization()