import torch from colossalai.fx.tracer.meta_patch import patched_module def _run(data, module, patch_fn): try: output = patch_fn(module, data) return output except Exception as e: return e def _assert_output_shape(data, module, patch_fn, expect_exception, output_shape): output = _run(data, module, patch_fn) if expect_exception: assert isinstance(output, AssertionError) else: assert not isinstance(output, Exception) assert output.is_meta assert output.shape == output_shape def test_linear(): # test linear patch can produce the meta output with correct shape data = torch.rand(2, 4, device='meta') module = torch.nn.Linear(4, 2) _assert_output_shape(data, module, patched_module.torch_nn_linear, False, torch.Size([2, 2])) # Test if the linear patch can catch exception when dimension does not match data = torch.rand(2, 2, device='meta') _assert_output_shape(data, module, patched_module.torch_nn_linear, True, None) def test_embedding(): data = torch.rand(2, 4, device='meta') # test layernorm ln = torch.nn.LayerNorm(4) _assert_output_shape(data, ln, patched_module.torch_nn_normalize, False, data.shape) # test group norm gn = torch.nn.GroupNorm(4, num_channels=8) _assert_output_shape(data, gn, patched_module.torch_nn_normalize, False, data.shape) # test batch norm 1d bn1d = torch.nn.BatchNorm1d(4) data = torch.rand(2, 4, device='meta') _assert_output_shape(data=data, module=bn1d, patch_fn=patched_module.torch_nn_normalize, expect_exception=False, output_shape=data.shape) data = torch.rand(2, 4, device='meta') _assert_output_shape(data=data, module=bn1d, patch_fn=patched_module.torch_nn_normalize, expect_exception=False, output_shape=data.shape) data = torch.rand(2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn1d, patch_fn=patched_module.torch_nn_normalize, expect_exception=False, output_shape=data.shape) data = torch.rand(1, 2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn1d, patch_fn=patched_module.torch_nn_normalize, expect_exception=True, output_shape=None) # test batch norm 2d bn2d = torch.nn.BatchNorm2d(4) data = torch.rand(1, 2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn2d, patch_fn=patched_module.torch_nn_normalize, expect_exception=False, output_shape=data.shape) data = torch.rand(2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn2d, patch_fn=patched_module.torch_nn_normalize, expect_exception=True, output_shape=None) # # test batch size 3d bn3d = torch.nn.BatchNorm3d(4) data = torch.rand(1, 1, 2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn3d, patch_fn=patched_module.torch_nn_normalize, expect_exception=False, output_shape=data.shape) data = torch.rand(1, 2, 3, 4, device='meta') _assert_output_shape(data=data, module=bn3d, patch_fn=patched_module.torch_nn_normalize, expect_exception=True, output_shape=None) def test_conv1d(): # test conv 1d data = torch.rand(2, 3, 4) conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2) materialized_output = conv1d(data) meta_data = data.to('meta') _assert_output_shape(data=meta_data, module=conv1d, patch_fn=patched_module.torch_nn_conv1d, expect_exception=False, output_shape=materialized_output.shape) conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1) materialized_output = conv1d(data) meta_data = data.to('meta') _assert_output_shape(data=meta_data, module=conv1d, patch_fn=patched_module.torch_nn_conv1d, expect_exception=False, output_shape=materialized_output.shape) conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2, padding_mode='reflect') materialized_output = conv1d(data) meta_data = data.to('meta') _assert_output_shape(data=meta_data, module=conv1d, patch_fn=patched_module.torch_nn_conv1d, expect_exception=False, output_shape=materialized_output.shape) def test_conv2d(): # test conv 1d data = torch.rand(2, 3, 4, 4) conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2) materialized_output = conv2d(data) _assert_output_shape(data=data, module=conv2d, patch_fn=patched_module.torch_nn_conv2d, expect_exception=False, output_shape=materialized_output.shape) conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1) materialized_output = conv2d(data) _assert_output_shape(data=data, module=conv2d, patch_fn=patched_module.torch_nn_conv2d, expect_exception=False, output_shape=materialized_output.shape) conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2) materialized_output = conv2d(data) _assert_output_shape(data=data, module=conv2d, patch_fn=patched_module.torch_nn_conv2d, expect_exception=False, output_shape=materialized_output.shape) conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2, padding_mode='reflect') materialized_output = conv2d(data) _assert_output_shape(data=data, module=conv2d, patch_fn=patched_module.torch_nn_conv2d, expect_exception=False, output_shape=materialized_output.shape) def test_conv3d(): # test conv 1d data = torch.rand(2, 3, 4, 4, 4) conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2) materialized_output = conv3d(data) _assert_output_shape(data=data, module=conv3d, patch_fn=patched_module.torch_nn_conv3d, expect_exception=False, output_shape=materialized_output.shape) conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1) materialized_output = conv3d(data) _assert_output_shape(data=data, module=conv3d, patch_fn=patched_module.torch_nn_conv3d, expect_exception=False, output_shape=materialized_output.shape) conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2) materialized_output = conv3d(data) _assert_output_shape(data=data, module=conv3d, patch_fn=patched_module.torch_nn_conv3d, expect_exception=False, output_shape=materialized_output.shape) conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2, padding_mode='reflect') materialized_output = conv3d(data) _assert_output_shape(data=data, module=conv3d, patch_fn=patched_module.torch_nn_conv3d, expect_exception=False, output_shape=materialized_output.shape) def test_pool1d(): combinations = [[torch.nn.MaxPool1d, patched_module.torch_nn_maxpool1d], [torch.nn.AvgPool1d, patched_module.torch_nn_avgpool1d]] for (layer_cls, patch_func) in combinations: pooler = layer_cls(kernel_size=3) data = torch.rand(2, 3, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) data = torch.rand(2, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) data = torch.rand(2, 3, 4, 4) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None) def test_pool2d(): combinations = [[torch.nn.MaxPool2d, patched_module.torch_nn_maxpool2d], [torch.nn.AvgPool2d, patched_module.torch_nn_avgpool2d]] for (layer_cls, patch_func) in combinations: pooler = layer_cls(kernel_size=3) # test max pool 3d data = torch.rand(2, 3, 4, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) # test max pool 3d data = torch.rand(2, 4, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) # test max pool 3d data = torch.rand(2, 3, 4, 4, 4) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None) def test_pool3d(): combinations = [[torch.nn.MaxPool3d, patched_module.torch_nn_maxpool3d], [torch.nn.AvgPool3d, patched_module.torch_nn_avgpool3d]] for (layer_cls, patch_func) in combinations: pooler = layer_cls(kernel_size=3) # test max pool 3d data = torch.rand(2, 3, 4, 4, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) # test max pool 3d data = torch.rand(2, 4, 4, 4) materialized_output = pooler(data) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=False, output_shape=materialized_output.shape) # test max pool 3d data = torch.rand(2, 3, 4) _assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)