import torch import torch.nn as nn import torch.nn.functional as F from ..registry import model_zoo from .base import CheckpointModule class SimpleNet(CheckpointModule): """ In this no-leaf module, it has subordinate nn.modules and a nn.Parameter. """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.embed = nn.Embedding(20, 4) self.proj1 = nn.Linear(4, 8) self.ln1 = nn.LayerNorm(8) self.proj2 = nn.Linear(8, 4) self.ln2 = nn.LayerNorm(4) self.classifier = nn.Linear(4, 4) def forward(self, x): x = self.embed(x) x = self.proj1(x) x = self.ln1(x) x = self.proj2(x) x = self.ln2(x) x = self.classifier(x) return x def data_gen(): return dict(x=torch.randint(low=0, high=20, size=(16,))) def loss_fn(x): outputs = x["x"] label = torch.randint(low=0, high=2, size=(16,), device=outputs.device) return F.cross_entropy(x["x"], label) def output_transform(x: torch.Tensor): return dict(x=x) model_zoo.register( name="custom_simple_net", model_fn=SimpleNet, data_gen_fn=data_gen, output_transform_fn=output_transform, loss_fn=loss_fn, )