import torch import torch.nn as nn import torch.optim as optim from coati.models import convert_to_lora_module from torch.utils.data import DataLoader, TensorDataset class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out def test_overfit(): input_size = 1000 hidden_size = 200 num_classes = 5 batch_size = 64 learning_rate = 0.01 num_epochs = 200 # Synthesized dataset X = torch.randn(batch_size, input_size) Y = torch.randint(0, num_classes, (batch_size,)) # Convert to DataLoader dataset = TensorDataset(X, Y) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # Build and convert model model = SimpleNN(input_size, hidden_size, num_classes) weight_to_compare = model.fc1.weight.detach().clone() model = convert_to_lora_module(model, lora_rank=30) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train the model for _ in range(num_epochs): for i, (inputs, labels) in enumerate(loader): # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) print(loss) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Check if model has overfitted outputs = model(X) _, predicted = torch.max(outputs.data, 1) total = labels.size(0) correct = (predicted == Y).sum().item() assert (correct / total > 0.95, "The model has not overfitted to the synthesized dataset") assert (weight_to_compare - model.fc1.weight).sum() < 0.01 if __name__ == "__main__": test_overfit()