from typing import Dict, Union import torch.nn as nn from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription __all__ = ['LlamaPolicy', 'LlamaForCausalLMPolicy', 'LlamaForSequenceClassificationPolicy'] class LlamaPolicy(Policy): def config_sanity_check(self): pass def preprocess(self): if self.shard_config.enable_tensor_parallelism: # Resize embedding vocab_size = self.model.config.vocab_size world_size = self.shard_config.tensor_parallel_size if vocab_size % world_size != 0: new_vocab_size = vocab_size + world_size - vocab_size % world_size self.model.resize_token_embeddings(new_vocab_size) return self.model def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]: from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel policy = {} if self.shard_config.enable_tensor_parallelism: policy[LlamaDecoderLayer] = ModulePolicyDescription( attribute_replacement={ "self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size, "self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size, }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="self_attn.q_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.k_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.v_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.o_proj", target_module=Linear1D_Row, ), SubModuleReplacementDescription( suffix="mlp.gate_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="mlp.up_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="mlp.down_proj", target_module=Linear1D_Row, ) ], ) self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription( suffix="embed_tokens", target_module=VocabParallelEmbedding1D, ), policy=policy, target_key=LlamaModel) # optimization configuration if self.shard_config.enable_fused_normalization: self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="input_layernorm", target_module=FusedRMSNorm, ), SubModuleReplacementDescription( suffix="post_attention_layernorm", target_module=FusedRMSNorm, ) ], policy=policy, target_key=LlamaDecoderLayer) self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription( suffix="norm", target_module=FusedRMSNorm, ), policy=policy, target_key=LlamaModel) return policy def postprocess(self): return self.model class LlamaForCausalLMPolicy(LlamaPolicy): def module_policy(self): from transformers import LlamaForCausalLM policy = super().module_policy() if self.shard_config.enable_tensor_parallelism: # add a new item for casual lm new_item = { LlamaForCausalLM: ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)) ]) } policy.update(new_item) return policy class LlamaForSequenceClassificationPolicy(LlamaPolicy): def module_policy(self): from transformers import LlamaForSequenceClassification policy = super().module_policy() if self.shard_config.enable_tensor_parallelism: # add a new item for sequence classification new_item = { LlamaForSequenceClassification: ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="score", target_module=Linear1D_Col, kwargs=dict(gather_output=True)) ]) } policy.update(new_item) return policy