import torch import torch.distributed as dist from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.registry import LOSSES from torch.cuda.amp import custom_bwd, custom_fwd from torch.nn.modules.loss import _Loss class _VocabParallelCrossEntropy1D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, vocab_parallel_logits, targets, process_group): if process_group is None: process_group = gpc.get_group(ParallelMode.PARALLEL_1D) # Maximum value along vocab dimension across all GPUs. logits_max = torch.max(vocab_parallel_logits, dim=-1)[0] torch.distributed.all_reduce(logits_max, op=torch.distributed.ReduceOp.MAX, group=process_group) # Subtract the maximum value. vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1)) # Get the partition's vocab indices partition_vocab_size = vocab_parallel_logits.size()[-1] rank = dist.get_rank(process_group) vocab_start_index = partition_vocab_size * rank vocab_end_index = vocab_start_index + partition_vocab_size # Create a mask of valid vocab ids (1 means it needs to be masked). target_mask = (targets < vocab_start_index) | (targets >= vocab_end_index) masked_target = targets.clone() - vocab_start_index masked_target[target_mask] = 0 # Get predicted-logits = logits[target]. # For Simplicity, we convert logits to a 2-D tensor with size # [*, partition-vocab-size] and target to a 1-D tensor of size [*]. logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size) masked_target_1d = masked_target.view(-1) arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device) predicted_logits_1d = logits_2d[arange_1d, masked_target_1d] predicted_logits_1d = predicted_logits_1d.clone().contiguous() predicted_logits = predicted_logits_1d.view_as(targets) predicted_logits[target_mask] = 0.0 # All reduce is needed to get the chunks from other GPUs. torch.distributed.all_reduce(predicted_logits, op=torch.distributed.ReduceOp.SUM, group=process_group) # Sum of exponential of logits along vocab dimension across all GPUs. exp_logits = torch.exp(vocab_parallel_logits) sum_exp_logits = exp_logits.sum(dim=-1) torch.distributed.all_reduce(sum_exp_logits, op=torch.distributed.ReduceOp.SUM, group=process_group) # Loss = log(sum(exp(logits))) - predicted-logit. loss = torch.log(sum_exp_logits) - predicted_logits # Store softmax, target-mask and masked-target for backward pass. exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) ctx.save_for_backward(exp_logits, target_mask, masked_target_1d) return loss @staticmethod @custom_bwd def backward(ctx, grad_output): # Retrieve tensors from the forward path. softmax, target_mask, masked_target_1d = ctx.saved_tensors # All the inputs have softmax as their gradient. grad_input = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = grad_input.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device) grad_2d[arange_1d, masked_target_1d] -= (1.0 - target_mask.view(-1).float()) # Finally elementwise multiplication with the output gradients. grad_input.mul_(grad_output.unsqueeze(dim=-1)) return grad_input, None, None @LOSSES.register_module class VocabParallelCrossEntropyLoss1D(_Loss): """Vocab parallel cross entropy loss for 1D parallelism. Args: reduction (bool, optional): whether to average the loss, defaults to True. """ def __init__(self, reduction=True): super().__init__() self.reduction_mean = reduction def forward(self, logits, targets, process_group=None): """Calculate loss between logits and targets. Args: logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits). targets (:class:`torch.tensor`): Ground truth class indices or class probabilities. """ loss = _VocabParallelCrossEntropy1D.apply(logits, targets, process_group) if self.reduction_mean: loss = loss.mean() return loss