import pytest import torch import colossalai from colossalai.tensor import ComputePattern, ComputeSpec, ProcessGroup, ShardSpec from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.utils import get_current_device from colossalai.zero import ColoInitContext from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration from tests.components_to_test.registry import non_distributed_component_funcs def init_1d_row_spec(model, pg: ProcessGroup): tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): if 'weight' in n and 'ln' not in n: p.set_process_group(pg) p.set_tensor_spec(*tensor_spec) def exam_search_chunk_size(): world_size = torch.distributed.get_world_size() pg_tp = ProcessGroup(tp_degree=world_size) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # make sure torch_model and model has the same parameter values with ColoInitContext(device=get_current_device()): model = model_builder() init_1d_row_spec(model, pg_tp) config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=16, min_chunk_size_m=0, filter_exlarge_params=True) for key in config_dict: chunk_size = config_dict[key]['chunk_size'] if world_size == 1: assert chunk_size == 31616 else: assert chunk_size == 1024 def exam_search_strict_ddp(): world_size = torch.distributed.get_world_size() default_shard_pg = ProcessGroup(tp_degree=world_size) default_shard_spec = ShardSpec([-1], [world_size]) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # get the chunk configuration over replicated models with ColoInitContext(device=get_current_device()): ddp_model = model_builder() re_dict, re_total, re_wasted = search_chunk_configuration(ddp_model, search_range_m=1, search_interval=16, min_chunk_size_m=0, filter_exlarge_params=True, strict_ddp_flag=False) # get the chunk configuration over sharded ddp models with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, default_dist_spec=default_shard_spec): sharded_ddp_model = model_builder() sh_dict, sh_total, sh_wasted = search_chunk_configuration(sharded_ddp_model, search_range_m=1, search_interval=16, min_chunk_size_m=0, filter_exlarge_params=True, strict_ddp_flag=True) assert re_dict == sh_dict for key in re_dict: assert re_dict[key] == sh_dict[key] assert re_total == sh_total assert re_wasted == sh_wasted def exam_chunk_manager(): world_size = torch.distributed.get_world_size() default_shard_pg = ProcessGroup(tp_degree=world_size) default_shard_spec = ShardSpec([-1], [world_size]) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, default_dist_spec=default_shard_spec): sharded_ddp_model = model_builder() chunk_manager = init_chunk_manager(sharded_ddp_model, get_current_device(), hidden_dim=16, search_range_m=1, min_chunk_size_m=0, filter_exlarge_params=True, strict_ddp_flag=True) config_dict = chunk_manager.dp_degree_chunk_size_dict assert len(config_dict) == 1 assert config_dict[world_size] == 31616 def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_search_chunk_size() exam_search_strict_ddp() exam_chunk_manager() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_search(world_size): spawn(run_dist, world_size) if __name__ == '__main__': test_search(4)