import pytest import torch import colossalai from colossalai.logging import disable_existing_loggers from colossalai.tensor.d_tensor.api import clear_layout_converter from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import ( build_model_from_hybrid_plugin, check_grad, check_loss, check_output_hidden_state, check_weight, run_forward_backward_with_hybrid_plugin, ) def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config): org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \ build_model_from_hybrid_plugin(model_fn, loss_fn, test_config) org_loss, org_output, sharded_loss, sharded_output = \ run_forward_backward_with_hybrid_plugin( org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster) stage_manager = booster.plugin.stage_manager tp_group = booster.plugin.tp_group # check last hidden state & loss if stage_manager is None or stage_manager.is_last_stage(): if org_model.__class__.__name__ == 'BloomModel': check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3) check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3) # unwrap model if org_model.__class__.__name__ == 'BloomModel': bloom = org_model sharded_bloom = sharded_model.unwrap() else: bloom = org_model.transformer sharded_bloom = sharded_model.unwrap().transformer # check grad row_layer_for_check = ['h[0].self_attention.query_key_value', 'word_embeddings'] col_layer_for_check = ['h[0].self_attention.dense'] if stage_manager is None or stage_manager.is_first_stage(): check_grad(bloom, sharded_bloom, row_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=0, verbose=False) check_grad(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=1, verbose=False) # check weights after optimizer.step() org_optimizer.step() sharded_optimizer.step() if stage_manager is None or stage_manager.is_first_stage(): check_weight(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=1, verbose=False) torch.cuda.empty_cache() @parameterize('test_config', [{ 'tp_size': 2, 'pp_size': 2, 'num_microbatches': 4, 'enable_fused_normalization': True, 'use_lazy_init': True }, { 'tp_size': 1, 'pp_size': 2, 'num_microbatches': 4, 'enable_fused_normalization': False, 'use_lazy_init': False }, { 'tp_size': 4, 'pp_size': 1, 'enable_fused_normalization': True, 'use_lazy_init': False }]) def run_bloom_test(test_config): # TODO: add test_config for TP+DP after supporting & debugging it # {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True} # TODO: add test_config for flash attention & jit operator after supporting sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom') test_config['precision'] = 'float' # Do not use fp16/bf16 in testing for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) clear_layout_converter() torch.cuda.empty_cache() def check_bloom(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_bloom_test() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_bloom(): spawn(check_bloom, 4) if __name__ == "__main__": test_bloom()