#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.distributed as dist from torch.distributed import ReduceOp from torch import Tensor from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device def all_gather(tensor: Tensor, dim: int, parallel_mode: ParallelMode, async_op: bool = False) -> Tensor: r"""Gathers all tensors from the parallel group and concatenates them in a specific dimension. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be gathered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-together only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: shape = list(tensor.shape) shape[0], shape[dim] = shape[dim], shape[0] shape[0] *= depth out = torch.empty(shape, dtype=tensor.dtype, device=get_current_device()) temp = list(torch.chunk(out, depth, dim=0)) work = dist.all_gather(tensor_list=temp, tensor=tensor.transpose(0, dim).contiguous(), group=gpc.get_group(parallel_mode), async_op=async_op) out = torch.transpose(out, 0, dim) if async_op: return out, work else: return out def reduce_scatter(tensor: Tensor, dim: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False) -> Tensor: r"""Reduces all tensors then scatters it in a specific dimension to all members in the parallel group. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduce_scattered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp `_. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce_scatter only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: temp = list(map(lambda x: x.contiguous(), torch.chunk(tensor, depth, dim=dim))) out = torch.empty(temp[0].shape, dtype=tensor.dtype, device=get_current_device()) work = dist.reduce_scatter(output=out, input_list=temp, op=op, group=gpc.get_group(parallel_mode), async_op=async_op) if async_op: return out, work else: return out def all_reduce(tensor: Tensor, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False) -> Tensor: r"""Reduces the tensor data across whole parallel group in such a way that all get the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be all-reduced. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp `_. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-gather only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() work = dist.all_reduce(out, op=op, group=gpc.get_group(parallel_mode), async_op=async_op) if async_op: return out, work else: return out def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, async_op: bool = False): r"""Broadcast tensors to whole parallel group. Tensor must have the same number of elements in all processes participating in the collective. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be broadcast. src (int): Source rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The tensor need to be broadcast only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() work = dist.broadcast(out, src=src, group=gpc.get_group(parallel_mode), async_op=async_op) if async_op: return out, work else: return out def reduce(tensor: Tensor, dst: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, async_op: bool = False): r"""Reduce tensors across whole parallel group. Only the process with rank ``dst`` is going to receive the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduced. dst (int): Destination rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() work = dist.reduce(out, dst=dst, op=op, group=gpc.get_group(parallel_mode), async_op=async_op) if async_op: return out, work else: return out