from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed @parameterize('placement_policy', ['cuda', 'cpu', 'auto']) @parameterize('keep_gathered', [True, False]) def exam_state_dict(placement_policy, keep_gathered): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() torch_model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) model.train() zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): if key == 'model.lm_head.weight': continue assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert torch.equal(value, temp_zero_value), "parameter '{}' has problem.".format(key) @parameterize('placement_policy', ['cuda', 'cpu', 'auto']) @parameterize('keep_gathered', [True, False]) def exam_load_state_dict(placement_policy, keep_gathered): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() set_seed(451) torch_model = model_builder() # get a different model world_size = torch.distributed.get_world_size() config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) torch_dict = torch_model.state_dict() model.load_state_dict(torch_dict, strict=False) zero_dict = model.state_dict(only_rank_0=False) for key, value in torch_dict.items(): if key == 'model.lm_head.weight': continue assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert torch.equal(value, temp_zero_value), "parameter '{}' has problem.".format(key) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_state_dict() exam_load_state_dict() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_zero_ddp(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_ddp(1)