#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy import colossalai from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2 import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.logging import disable_existing_loggers from colossalai.utils import checkpoint, clip_grad_norm_fp32, free_port from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy from functools import partial from colossalai.testing import parameterize, rerun_if_address_is_in_use def checkpoint_wrapper(module, enable=True): if enable: module.forward = partial(checkpoint, module.forward, False) return module class Net(nn.Module): def __init__(self, checkpoint=False) -> None: super().__init__() self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 1) if checkpoint: self.fc1 = checkpoint_wrapper(self.fc1) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x def run_step(model, optimizer, x, enable_autocast=False, norm_type=2.0): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): y = model(x) loss = y.sum() loss = loss.float() loss.backward() clip_grad(model, norm_type) optimizer.step() def clip_grad(model, norm_type): if isinstance(model, DDP): clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=norm_type) else: clip_grad_norm_fp32(model.parameters(), max_norm=1.0, norm_type=norm_type) def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: if loose: return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3) return torch.allclose(tensor_a, tensor_b) def check_grads(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_grad = zero_p.grad.clone().to(p.device) chunks = torch.flatten(p.grad).chunk(4) if rank >= len(chunks): continue grad = chunks[rank] if zero_p.zero_shard_padding > 0: zero_grad = zero_grad[:-zero_p.zero_shard_padding] assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose) def check_params(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_shard_padding = zero_p.zero_shard_padding zero_p = zero_p.clone().to(p.device) chunks = torch.flatten(p).chunk(4) if rank >= len(chunks): continue p = chunks[rank] if zero_shard_padding > 0: zero_p = zero_p[:-zero_shard_padding] assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose) def run_dist(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') @pytest.mark.dist @rerun_if_address_is_in_use() def test_zero_clip_grad(): world_size = 4 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_clip_grad()