import pytest import torch from colossalai.testing import clear_cache_before_run, parameterize try: from colossalai._analyzer.fx import symbolic_trace except: pass class LinearModel(torch.nn.Module): def __init__(self, in_features, out_features, bias): super().__init__() self.linear = torch.nn.Linear(in_features, out_features, bias=bias) def forward(self, x): x = self.linear(x) return x class ConvModel(torch.nn.Module): def __init__(self, in_channel, out_channels, kernel_size, bias) -> None: super().__init__() self.conv = torch.nn.Conv2d( in_channel, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3 ) self.conv_transpose = torch.nn.ConvTranspose2d( out_channels, out_channels, kernel_size, bias=bias, padding=1, stride=2, dilation=2, groups=3 ) def forward(self, x): x = self.conv(x) x = self.conv_transpose(x) return x class AModel(torch.nn.Module): def __init__(self, bias) -> None: super().__init__() self.linear_1 = LinearModel(3, 3, bias) self.linear_2 = LinearModel(3, 3, bias) self.conv = ConvModel(3, 6, 3, bias) def forward(self, x): for i in range(x.shape[0]): x = self.linear_1(x) x = self.linear_2(x) x = self.conv(x) return x @pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12") @clear_cache_before_run() @parameterize("bias", [True, False]) @parameterize("bias_addition_split", [True, False]) @parameterize("shape", [(3, 3, 3), (3, 3, 3, 3)]) def test_mod_dir(bias, bias_addition_split, shape): model = AModel(bias=bias) x = torch.rand(shape) gm = symbolic_trace(model, meta_args={"x": x}, bias_addition_split=bias_addition_split) for node in gm.graph.nodes: assert len(node.meta["info"].mod_dir), f"{node} should have non-trivial ``mod_dir``." print(node, node.meta["info"].mod_dir) if __name__ == "__main__": test_mod_dir(bias=True, bias_addition_split=True, shape=(3, 3, 3))