from typing import Optional import torch.nn as nn from transformers import LlamaConfig, LlamaModel from ..base import Critic class LlamaCritic(Critic): """ Llama Critic model. Args: pretrained (str): Pretrained model name or path. config (LlamaConfig): Model config. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[LlamaConfig] = None, lora_rank: int = 0, lora_train_bias: str = 'none', **kwargs) -> None: if pretrained is not None: model = LlamaModel.from_pretrained(pretrained) elif config is not None: model = LlamaModel(config) else: model = LlamaModel(LlamaConfig()) value_head = nn.Linear(model.config.hidden_size, 1) super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)