import pytest import torch import torch.distributed as dist from torch.optim import Adam from utils import shared_tempdir import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import HybridParallelPlugin from colossalai.shardformer.layer.utils import Randomizer from colossalai.tensor.d_tensor.api import clear_layout_converter from colossalai.testing import ( check_state_dict_equal, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo def exam_from_pretrained(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, shard=True, size_per_shard=32): def _criterion(outputs, inputs): outputs = output_transform_fn(outputs) loss = criterion(outputs) return loss def _preprocess_data(data): if booster.plugin.stage_manager is not None: for k, v in data.items(): if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__: new_shape = [1] * v.dim() new_shape[0] = 4 data[k] = v.to('cuda').repeat(*new_shape) return iter([data]) else: return {k: v.cuda() for k, v in data.items()} model = model_fn() optimizer = Adam((model.parameters()), lr=0.001) criterion = loss_fn plugin = HybridParallelPlugin(**test_config) booster = Booster(plugin=plugin) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) data = data_gen_fn() model.train() if booster.plugin.stage_manager is not None: booster.execute_pipeline(_preprocess_data(data), model, _criterion, optimizer, return_loss=True, return_outputs=False) else: output = model(**_preprocess_data(data)) loss = criterion(output) optimizer.backward(loss) optimizer.step() with shared_tempdir() as tempdir: model_ckpt_path = f"{tempdir}/model" booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard) dist.barrier() new_model = model.unwrap().__class__.from_pretrained(model_ckpt_path) new_optimizer = Adam(new_model.parameters(), lr=1e-3) new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False) Randomizer.reset_index() torch.cuda.empty_cache() @clear_cache_before_run() @parameterize('test_config', [{ 'tp_size': 4, 'pp_size': 1, 'precision': 'fp32', }, { 'tp_size': 2, 'pp_size': 2, 'num_microbatches': 4, 'precision': 'fp16', 'initial_scale': 1 }, { 'tp_size': 2, 'pp_size': 1, 'zero_stage': 2, 'precision': 'fp16', 'initial_scale': 1 }, { 'tp_size': 1, 'pp_size': 2, 'num_microbatches': 4, 'zero_stage': 1, 'precision': 'fp16', 'initial_scale': 1 }]) def run_test(test_config): sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): exam_from_pretrained(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) clear_layout_converter() torch.cuda.empty_cache() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_test() @pytest.mark.dist @pytest.mark.parametrize('world_size', [4]) @rerun_if_address_is_in_use() def test_huggingface_compatibility(world_size): spawn(run_dist, world_size)