from typing import Any, Dict, List import torch from colossalai.shardformer.layer.loss import dist_log_prob def unbind_batch(batch: Dict[str, torch.Tensor]) -> List[Dict[str, torch.Tensor]]: batches = [] for k, v in batch.items(): if len(batches) == 0: unbinded_tensors = v.unbind(0) batches = [{k: tensor} for tensor in unbinded_tensors] else: unbinded_tensors = v.unbind(0) assert len(batches) == len(unbinded_tensors) for i, tensor in enumerate(unbinded_tensors): batches[i][k] = tensor return batches def bind_batch(batches: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]: batch = {} for k in batches[0].keys(): batch[k] = torch.stack([batch[k] for batch in batches], dim=0) return batch def pre_send(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # compress mask to save bandwidth if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.bool) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.bool) return batch def post_recv(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # decompress mask if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.int) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.int) return batch def update_by_default(data: Dict[str, Any], default: Dict[str, Any]) -> Dict[str, Any]: data = data.copy() for k, v in default.items(): if k not in data: data[k] = v return data def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: """ Compute the log probabilities from logits for the given labels. Args: logits (torch.Tensor): The input logits. labels (torch.Tensor): The target labels. Returns: torch.Tensor: The log probabilities corresponding to the labels. """ log_probs = torch.log_softmax(logits, dim=-1) per_label_logps = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) return per_label_logps.squeeze(-1) def calc_action_log_probs( logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int, shard_config, vocab_size: int = None, ) -> torch.Tensor: """Calculate action log probs. Args: logits (torch.Tensor): Output tensor of Actor.forward.logits. sequences (torch.LongTensor): Input sequences. num_actions (int): Number of actions. shard_config vocab_size Returns: torch.Tensor: Action log probs. """ # labels: torch.Tensor, # [B, S] or [B, S, Vocab_size] # logits: torch.Tensor, # [B, S, Vocab_size] log_probs = dist_log_prob(sequences, logits, shard_config, vocab_size, logits.dtype) log_probs = log_probs.squeeze(-1) return log_probs[:, -num_actions:] def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: """ Compute the masked mean of a tensor along a specified dimension. Args: tensor (torch.Tensor): The input tensor. mask (torch.Tensor): The mask tensor with the same shape as the input tensor. dim (int, optional): The dimension along which to compute the mean. Default is 1. Returns: torch.Tensor: The masked mean tensor. """ tensor = tensor * mask tensor = tensor.sum(dim=dim) mask_sum = mask.sum(dim=dim) mean = tensor / (mask_sum + 1e-8) return mean def get_logits_rebatched_forward(model, batch_size, input_ids, attention_mask): """ Get logits from the model with rebatched forward. Args: model (torch.nn.Module): The model. batch_size (int): The batch size. input_ids (torch.Tensor): The input ids. attention_mask (torch.Tensor): The attention mask. """ logits = [] for i in range(0, input_ids.size(0), batch_size): logits.append( model(input_ids=input_ids[i : i + batch_size], attention_mask=attention_mask[i : i + batch_size])["logits"] ) return torch.cat(logits, dim=0)