from typing import List from torch import Tensor def has_inf_or_nan(tensor): """Check if tensor has inf or nan values. Args: tensor (:class:`torch.Tensor`): a torch tensor object Returns: bool: Whether the tensor has inf or nan. True for yes and False for no. """ try: # if tensor is half, the .float() incurs an additional deep copy, but it's necessary if # Pytorch's .sum() creates a one-element tensor of the same type as tensor # (which is true for some recent version of pytorch). tensor_sum = float(tensor.float().sum()) # More efficient version that can be used if .sum() returns a Python scalar # tensor_sum = float(tensor.sum()) except RuntimeError as instance: # We want to check if inst is actually an overflow exception. # RuntimeError could come from a different error. # If so, we still want the exception to propagate. if "value cannot be converted" not in instance.args[0]: raise return True else: if tensor_sum == float("inf") or tensor_sum == -float("inf") or tensor_sum != tensor_sum: return True return False def zero_gard_by_list(tensor_list: List[Tensor], set_to_none: bool = True) -> None: """Clear the gradient of a list of tensors, Note: copied from torch.optim.optimizer. """ for param in tensor_list: if param.grad is not None: if set_to_none: param.grad = None else: if param.grad.grad_fn is not None: param.grad.detach_() else: param.grad.requires_grad_(False) param.grad.zero_()