# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/quant.py import math import numpy as np import torch import torch.nn as nn def quantize(x, scale, zero, maxq): q = torch.clamp(torch.round(x / scale) + zero, 0, maxq) return scale * (q - zero) class Quantizer(nn.Module): def __init__(self, shape=1): super(Quantizer, self).__init__() self.register_buffer("maxq", torch.tensor(0)) self.register_buffer("scale", torch.zeros(shape)) self.register_buffer("zero", torch.zeros(shape)) def configure(self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=0.8): self.maxq = torch.tensor(2**bits - 1) self.perchannel = perchannel self.sym = sym self.mse = mse self.norm = norm self.grid = grid self.maxshrink = maxshrink def find_params(self, x, weight=False): dev = x.device self.maxq = self.maxq.to(dev) shape = x.shape if self.perchannel: if weight: x = x.flatten(1) else: if len(shape) == 4: x = x.permute([1, 0, 2, 3]) x = x.flatten(1) if len(shape) == 3: x = x.reshape((-1, shape[-1])).t() if len(shape) == 2: x = x.t() else: x = x.flatten().unsqueeze(0) tmp = torch.zeros(x.shape[0], device=dev) xmin = torch.minimum(x.min(1)[0], tmp) xmax = torch.maximum(x.max(1)[0], tmp) if self.sym: xmax = torch.maximum(torch.abs(xmin), xmax) tmp = xmin < 0 if torch.any(tmp): xmin[tmp] = -xmax[tmp] tmp = (xmin == 0) & (xmax == 0) xmin[tmp] = -1 xmax[tmp] = +1 self.scale = (xmax - xmin) / self.maxq if self.sym: self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2) else: self.zero = torch.round(-xmin / self.scale) if self.mse: best = torch.full([x.shape[0]], float("inf"), device=dev) for i in range(int(self.maxshrink * self.grid)): p = 1 - i / self.grid xmin1 = p * xmin xmax1 = p * xmax scale1 = (xmax1 - xmin1) / self.maxq zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq) q -= x q.abs_() q.pow_(self.norm) err = torch.sum(q, 1) tmp = err < best if torch.any(tmp): best[tmp] = err[tmp] self.scale[tmp] = scale1[tmp] self.zero[tmp] = zero1[tmp] if not self.perchannel: if weight: tmp = shape[0] else: tmp = shape[1] if len(shape) != 3 else shape[2] self.scale = self.scale.repeat(tmp) self.zero = self.zero.repeat(tmp) if weight: shape = [-1] + [1] * (len(shape) - 1) self.scale = self.scale.reshape(shape) self.zero = self.zero.reshape(shape) return if len(shape) == 4: self.scale = self.scale.reshape((1, -1, 1, 1)) self.zero = self.zero.reshape((1, -1, 1, 1)) if len(shape) == 3: self.scale = self.scale.reshape((1, 1, -1)) self.zero = self.zero.reshape((1, 1, -1)) if len(shape) == 2: self.scale = self.scale.unsqueeze(0) self.zero = self.zero.unsqueeze(0) def quantize(self, x): if self.ready(): return quantize(x, self.scale, self.zero, self.maxq) return x def enabled(self): return self.maxq > 0 def ready(self): return torch.all(self.scale != 0) try: import quant_cuda except: print("CUDA extension not installed.") # Assumes layer is perfectly divisible into 256 * 256 blocks class QuantLinear(nn.Module): def __init__(self, bits, groupsize, infeatures, outfeatures): super().__init__() if bits not in [2, 3, 4, 8]: raise NotImplementedError("Only 2,3,4,8 bits are supported.") self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2, int(math.log2(groupsize)))): raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)") groupsize = groupsize if groupsize != -1 else infeatures self.groupsize = groupsize self.register_buffer( "qzeros", torch.zeros((math.ceil(infeatures / groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int) ) self.register_buffer("scales", torch.zeros((math.ceil(infeatures / groupsize), outfeatures))) self.register_buffer("bias", torch.zeros(outfeatures)) self.register_buffer("qweight", torch.zeros((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)) self._initialized_quant_state = False def pack(self, linear, scales, zeros): scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone() if linear.bias is not None: self.bias = linear.bias.clone() intweight = [] for idx in range(self.infeatures): g_idx = idx // self.groupsize intweight.append( torch.round((linear.weight.data[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[ :, None ] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) qweight = np.zeros((intweight.shape[0] // 256 * (self.bits * 8), intweight.shape[1]), dtype=np.uint32) i = 0 row = 0 while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 elif self.bits == 3: for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i)) i += 10 qweight[row] |= intweight[i] << 30 row += 1 qweight[row] |= (intweight[i] >> 2) & 1 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 1) i += 10 qweight[row] |= intweight[i] << 31 row += 1 qweight[row] |= (intweight[i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 2) i += 10 row += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 elif self.bits == 3: for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i)) i += 10 qzeros[:, col] |= zeros[:, i] << 30 col += 1 qzeros[:, col] |= (zeros[:, i] >> 2) & 1 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1) i += 10 qzeros[:, col] |= zeros[:, i] << 31 col += 1 qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2) i += 10 col += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): intermediate_dtype = torch.float32 if not self._initialized_quant_state: # Do we even have a bias? Check for at least one non-zero element. if self.bias is not None and bool(torch.any(self.bias != 0)): # Then make sure it's the right type. self.bias.data = self.bias.data.to(intermediate_dtype) else: self.bias = None outshape = list(x.shape) outshape[-1] = self.outfeatures x = x.reshape(-1, x.shape[-1]) if self.bias is None: y = torch.zeros(x.shape[0], outshape[-1], dtype=intermediate_dtype, device=x.device) else: y = self.bias.clone().repeat(x.shape[0], 1) output_dtype = x.dtype x = x.to(intermediate_dtype) if self.bits == 2: quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) elif self.bits == 3: quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) elif self.bits == 4: quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) elif self.bits == 8: quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") y = y.to(output_dtype) return y.reshape(outshape) def make_quant(module, names, bits, groupsize, name=""): if isinstance(module, QuantLinear): return for attr in dir(module): tmp = getattr(module, attr) name1 = name + "." + attr if name != "" else attr if name1 in names: setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features)) for name1, child in module.named_children(): make_quant(child, names, bits, groupsize, name + "." + name1 if name != "" else name1)