import argparse import logging import random from typing import Optional from batch import BatchManagerForGeneration from cache import ListCache, MissCacheError from energonai import QueueFullError, launch_engine from energonai.model import opt_6B, opt_30B, opt_125M, opt_175B from pydantic import BaseModel, Field from sanic import Sanic from sanic.request import Request from sanic.response import json from sanic_ext import openapi, validate from torch import Tensor from transformers import GPT2Tokenizer class GenerationTaskReq(BaseModel): max_tokens: int = Field(gt=0, le=256, example=64) prompt: str = Field( min_length=1, example="Question: Where were the 2004 Olympics held?\nAnswer: Athens, Greece\n\nQuestion: What is the longest river on the earth?\nAnswer:", ) top_k: Optional[int] = Field(default=None, gt=0, example=50) top_p: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.5) temperature: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.7) app = Sanic("opt") @app.post("/generation") @openapi.body(GenerationTaskReq) @validate(json=GenerationTaskReq) async def generate(request: Request, body: GenerationTaskReq): logger.info(f'{request.ip}:{request.port} - "{request.method} {request.path}" - {body}') key = (body.prompt, body.max_tokens) try: if cache is None: raise MissCacheError() outputs = cache.get(key) output = random.choice(outputs) logger.info("Cache hit") except MissCacheError: inputs = tokenizer(body.prompt, truncation=True, max_length=512) inputs["max_tokens"] = body.max_tokens inputs["top_k"] = body.top_k inputs["top_p"] = body.top_p inputs["temperature"] = body.temperature try: uid = id(body) engine.submit(uid, inputs) output = await engine.wait(uid) assert isinstance(output, Tensor) output = tokenizer.decode(output, skip_special_tokens=True) if cache is not None: cache.add(key, output) except QueueFullError as e: return json({"detail": e.args[0]}, status=406) return json({"text": output}) @app.after_server_stop def shutdown(*_): engine.shutdown() def get_model_fn(model_name: str): model_map = {"opt-125m": opt_125M, "opt-6.7b": opt_6B, "opt-30b": opt_30B, "opt-175b": opt_175B} return model_map[model_name] def print_args(args: argparse.Namespace): print("\n==> Args:") for k, v in args.__dict__.items(): print(f"{k} = {v}") FIXED_CACHE_KEYS = [ ( "Question: What is the name of the largest continent on earth?\nAnswer: Asia\n\nQuestion: What is at the center of the solar system?\nAnswer:", 64, ), ( "A chat between a salesman and a student.\n\nSalesman: Hi boy, are you looking for a new phone?\nStudent: Yes, my phone is not functioning well.\nSalesman: What is your budget? \nStudent: I have received my scholarship so I am fine with any phone.\nSalesman: Great, then perhaps this latest flagship phone is just right for you.", 64, ), ( "English: I am happy today.\nChinese: 我今天很开心。\n\nEnglish: I am going to play basketball.\nChinese: 我一会去打篮球。\n\nEnglish: Let's celebrate our anniversary.\nChinese:", 64, ), ] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("model", choices=["opt-125m", "opt-6.7b", "opt-30b", "opt-175b"]) parser.add_argument("--tp", type=int, default=1) parser.add_argument("--master_host", default="localhost") parser.add_argument("--master_port", type=int, default=19990) parser.add_argument("--rpc_port", type=int, default=19980) parser.add_argument("--max_batch_size", type=int, default=8) parser.add_argument("--pipe_size", type=int, default=1) parser.add_argument("--queue_size", type=int, default=0) parser.add_argument("--http_host", default="0.0.0.0") parser.add_argument("--http_port", type=int, default=7070) parser.add_argument("--checkpoint", default=None) parser.add_argument("--cache_size", type=int, default=0) parser.add_argument("--cache_list_size", type=int, default=1) args = parser.parse_args() print_args(args) model_kwargs = {} if args.checkpoint is not None: model_kwargs["checkpoint"] = args.checkpoint logger = logging.getLogger(__name__) tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-30b") if args.cache_size > 0: cache = ListCache(args.cache_size, args.cache_list_size, fixed_keys=FIXED_CACHE_KEYS) else: cache = None engine = launch_engine( args.tp, 1, args.master_host, args.master_port, args.rpc_port, get_model_fn(args.model), batch_manager=BatchManagerForGeneration( max_batch_size=args.max_batch_size, pad_token_id=tokenizer.pad_token_id ), pipe_size=args.pipe_size, queue_size=args.queue_size, **model_kwargs, ) app.run(args.http_host, args.http_port)