import torch import yaml from diffusers import StableDiffusionPipeline from ldm.modules.diffusionmodules.openaimodel import UNetModel if __name__ == "__main__": with torch.no_grad(): yaml_path = "../../train_colossalai.yaml" with open(yaml_path, "r", encoding="utf-8") as f: config = f.read() base_config = yaml.load(config, Loader=yaml.FullLoader) unet_config = base_config["model"]["params"]["unet_config"] diffusion_model = UNetModel(**unet_config).to("cuda:0") pipe = StableDiffusionPipeline.from_pretrained("/data/scratch/diffuser/stable-diffusion-v1-4").to("cuda:0") dif_model_2 = pipe.unet random_input_ = torch.rand((4, 4, 32, 32)).to("cuda:0") random_input_2 = torch.clone(random_input_).to("cuda:0") time_stamp = torch.randint(20, (4,)).to("cuda:0") time_stamp2 = torch.clone(time_stamp).to("cuda:0") context_ = torch.rand((4, 77, 768)).to("cuda:0") context_2 = torch.clone(context_).to("cuda:0") out_1 = diffusion_model(random_input_, time_stamp, context_) out_2 = dif_model_2(random_input_2, time_stamp2, context_2) print(out_1.shape) print(out_2["sample"].shape)