""" This code is copied from https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py """ """Tokenization classes for ChatGLM.""" import os from typing import Dict, List, Optional, Union import numpy as np import sentencepiece as spm from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils_base import BatchEncoding, EncodedInput from transformers.utils import PaddingStrategy, logging logger = logging.get_logger(__name__) PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "THUDM/chatglm-6b": 2048, } class TextTokenizer: def __init__(self, model_path): self.sp = spm.SentencePieceProcessor() self.sp.Load(model_path) self.num_tokens = self.sp.vocab_size() def encode(self, text): return self.sp.EncodeAsIds(text) def decode(self, ids: List[int]): return self.sp.DecodeIds(ids) def tokenize(self, text): return self.sp.EncodeAsPieces(text) def convert_tokens_to_string(self, tokens): return self.sp.DecodePieces(tokens) def convert_tokens_to_ids(self, tokens): return [self.sp.PieceToId(token) for token in tokens] def convert_token_to_id(self, token): return self.sp.PieceToId(token) def convert_id_to_token(self, idx): return self.sp.IdToPiece(idx) def __len__(self): return self.num_tokens class SPTokenizer: def __init__( self, vocab_file, num_image_tokens=20000, max_blank_length=80, byte_fallback=True, ): assert vocab_file is not None self.vocab_file = vocab_file self.num_image_tokens = num_image_tokens self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "", "", "", "", ""] self.max_blank_length = max_blank_length self.byte_fallback = byte_fallback self.text_tokenizer = TextTokenizer(vocab_file) def _get_text_tokenizer(self): return self.text_tokenizer @staticmethod def get_blank_token(length: int): assert length >= 2 return f"<|blank_{length}|>" @staticmethod def get_tab_token(): return f"<|tab|>" @property def num_text_tokens(self): return self.text_tokenizer.num_tokens @property def num_tokens(self): return self.num_image_tokens + self.num_text_tokens @staticmethod def _encode_whitespaces(text: str, max_len: int = 80): text = text.replace("\t", SPTokenizer.get_tab_token()) for i in range(max_len, 1, -1): text = text.replace(" " * i, SPTokenizer.get_blank_token(i)) return text def _preprocess(self, text: str, linebreak=True, whitespaces=True): if linebreak: text = text.replace("\n", "") if whitespaces: text = self._encode_whitespaces(text, max_len=self.max_blank_length) return text def encode(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[int]: """ @param text: Text to encode. @param linebreak: Whether to encode newline (\n) in text. @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. @param add_dummy_prefix: Whether to add dummy blank space in the beginning. """ text = self._preprocess(text, linebreak, whitespaces) if not add_dummy_prefix: text = "" + text tmp = self._get_text_tokenizer().encode(text) tokens = [x + self.num_image_tokens for x in tmp] return tokens if add_dummy_prefix else tokens[2:] def postprocess(self, text): text = text.replace("", "\n") text = text.replace(SPTokenizer.get_tab_token(), "\t") for i in range(2, self.max_blank_length + 1): text = text.replace(self.get_blank_token(i), " " * i) return text def decode(self, text_ids: List[int]) -> str: ids = [int(_id) - self.num_image_tokens for _id in text_ids] ids = [_id for _id in ids if _id >= 0] text = self._get_text_tokenizer().decode(ids) text = self.postprocess(text) return text def decode_tokens(self, tokens: List[str]) -> str: text = self._get_text_tokenizer().convert_tokens_to_string(tokens) text = self.postprocess(text) return text def tokenize(self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True) -> List[str]: """ @param text: Text to encode. @param linebreak: Whether to encode newline (\n) in text. @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. @param add_dummy_prefix: Whether to add dummy blank space in the beginning. """ text = self._preprocess(text, linebreak, whitespaces) if not add_dummy_prefix: text = "" + text tokens = self._get_text_tokenizer().tokenize(text) return tokens if add_dummy_prefix else tokens[2:] def __getitem__(self, x: Union[int, str]): if isinstance(x, int): if x < self.num_image_tokens: return "".format(x) else: return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens) elif isinstance(x, str): if x.startswith("") and x[7:-1].isdigit(): return int(x[7:-1]) else: return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens else: raise ValueError("The key should be str or int.") class ChatGLMTokenizer(PreTrainedTokenizer): """ Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = {"vocab_file": "ice_text.model"} max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__( self, vocab_file, do_lower_case=False, remove_space=False, bos_token="", eos_token="", end_token="", mask_token="[MASK]", gmask_token="[gMASK]", padding_side="left", pad_token="", unk_token="", num_image_tokens=20000, **kwargs, ) -> None: super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, padding_side=padding_side, bos_token=bos_token, eos_token=eos_token, end_token=end_token, mask_token=mask_token, gmask_token=gmask_token, pad_token=pad_token, unk_token=unk_token, num_image_tokens=num_image_tokens, **kwargs, ) self.do_lower_case = do_lower_case self.remove_space = remove_space self.vocab_file = vocab_file self.bos_token = bos_token self.eos_token = eos_token self.end_token = end_token self.mask_token = mask_token self.gmask_token = gmask_token self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens) """ Initialisation """ @property def gmask_token_id(self) -> Optional[int]: if self.gmask_token is None: return None return self.convert_tokens_to_ids(self.gmask_token) @property def end_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been set. """ if self.end_token is None: return None return self.convert_tokens_to_ids(self.end_token) @property def vocab_size(self): """Returns vocab size""" return self.sp_tokenizer.num_tokens def get_vocab(self): """Returns vocab as a dict""" vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text, **kwargs): """Returns a tokenized string.""" text = self.preprocess_text(text) seq = self.sp_tokenizer.tokenize(text) return seq def convert_tokens_to_string(self, tokens: List[str]) -> str: return self.sp_tokenizer.decode_tokens(tokens) def _decode(self, token_ids: Union[int, List[int]], **kwargs) -> str: if isinstance(token_ids, int): token_ids = [token_ids] if len(token_ids) == 0: return "" if self.pad_token_id in token_ids: # remove pad token_ids = list(filter((self.pad_token_id).__ne__, token_ids)) return super()._decode(token_ids, **kwargs) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_tokenizer[token] def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_tokenizer[index] def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) else: vocab_file = save_directory with open(self.vocab_file, "rb") as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ gmask_id = self.sp_tokenizer[self.gmask_token] self.sp_tokenizer[self.eos_token] token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]] if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults bos_token_id = self.sp_tokenizer[self.bos_token] mask_token_id = self.sp_tokenizer[self.mask_token] gmask_token_id = self.sp_tokenizer[self.gmask_token] assert self.padding_side == "left" required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if max_length is not None: if "attention_mask" not in encoded_inputs: if bos_token_id in required_input: context_length = required_input.index(bos_token_id) else: context_length = seq_length attention_mask = np.ones((1, seq_length, seq_length)) attention_mask = np.tril(attention_mask) attention_mask[:, :, :context_length] = 1 attention_mask = np.bool_(attention_mask < 0.5) encoded_inputs["attention_mask"] = attention_mask if "position_ids" not in encoded_inputs: if bos_token_id in required_input: context_length = required_input.index(bos_token_id) else: context_length = seq_length position_ids = np.arange(seq_length, dtype=np.int64) mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id if mask_token in required_input: mask_position = required_input.index(mask_token) position_ids[context_length:] = mask_position block_position_ids = np.concatenate( [ np.zeros(context_length, dtype=np.int64), np.arange(1, seq_length - context_length + 1, dtype=np.int64), ] ) encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = np.pad( encoded_inputs["attention_mask"], pad_width=[(0, 0), (difference, 0), (difference, 0)], mode="constant", constant_values=True, ) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = np.pad( encoded_inputs["position_ids"], pad_width=[(0, 0), (difference, 0)] ) encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input return encoded_inputs