import argparse import os from pathlib import Path import torch from titans.utils import barrier_context from torch.fx import GraphModule from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet50 from tqdm import tqdm import colossalai from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser from colossalai.auto_parallel.tensor_shard.solver.options import DataloaderOption, SolverOptions from colossalai.auto_parallel.tensor_shard.solver.solver import Solver from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor from colossalai.core import global_context as gpc from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.logging import get_dist_logger from colossalai.nn.lr_scheduler import CosineAnnealingLR from colossalai.utils import get_dataloader DATA_ROOT = Path(os.environ.get('DATA', '../data')).absolute() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--synthetic', action="store_true", help="use synthetic dataset instead of CIFAR10") return parser.parse_args() def synthesize_data(): img = torch.rand(gpc.config.BATCH_SIZE, 3, 32, 32) label = torch.randint(low=0, high=10, size=(gpc.config.BATCH_SIZE,)) return img, label def main(): args = parse_args() colossalai.launch_from_torch(config='./config.py') logger = get_dist_logger() if not args.synthetic: with barrier_context(): # build dataloaders train_dataset = CIFAR10(root=DATA_ROOT, download=True, transform=transforms.Compose([ transforms.RandomCrop(size=32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]), ])) test_dataset = CIFAR10(root=DATA_ROOT, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]), ])) train_dataloader = get_dataloader( dataset=train_dataset, add_sampler=True, shuffle=True, batch_size=gpc.config.BATCH_SIZE, pin_memory=True, ) test_dataloader = get_dataloader( dataset=test_dataset, add_sampler=True, batch_size=gpc.config.BATCH_SIZE, pin_memory=True, ) else: train_dataloader, test_dataloader = None, None # initialize device mesh physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # trace the model with meta data tracer = ColoTracer() model = resnet50(num_classes=10).cuda() input_sample = {'x': torch.rand([gpc.config.BATCH_SIZE * torch.distributed.get_world_size(), 3, 32, 32]).to('meta')} graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() # prepare info for solver solver_options = SolverOptions(dataloader_option=DataloaderOption.DISTRIBUTED) strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() graph_analyser = GraphAnalyser(gm) # solve the solution solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) ret = solver.call_solver_serialized_args() solution = list(ret[0]) if gpc.get_global_rank() == 0: for index, node in enumerate(graph.nodes): print(node.name, node.strategies_vector[solution[index]].name) # process the graph for distributed training ability gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh) gm = runtime_apply_pass(gm) gm.recompile() # build criterion criterion = torch.nn.CrossEntropyLoss() # optimizer optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # lr_scheduler lr_scheduler = CosineAnnealingLR(optimizer, total_steps=gpc.config.NUM_EPOCHS) for epoch in range(gpc.config.NUM_EPOCHS): gm.train() if args.synthetic: # if we use synthetic data # we assume it only has 30 steps per epoch num_steps = range(30) else: # we use the actual number of steps for training num_steps = range(len(train_dataloader)) data_iter = iter(train_dataloader) progress = tqdm(num_steps) for _ in progress: if args.synthetic: # generate fake data img, label = synthesize_data() else: # get the real data img, label = next(data_iter) img = img.cuda() label = label.cuda() optimizer.zero_grad() output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict) train_loss = criterion(output, label) train_loss.backward(train_loss) optimizer.step() lr_scheduler.step() # run evaluation gm.eval() correct = 0 total = 0 if args.synthetic: # if we use synthetic data # we assume it only has 10 steps for evaluation num_steps = range(30) else: # we use the actual number of steps for training num_steps = range(len(test_dataloader)) data_iter = iter(test_dataloader) progress = tqdm(num_steps) for _ in progress: if args.synthetic: # generate fake data img, label = synthesize_data() else: # get the real data img, label = next(data_iter) img = img.cuda() label = label.cuda() with torch.no_grad(): output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict) test_loss = criterion(output, label) pred = torch.argmax(output, dim=-1) correct += torch.sum(pred == label) total += img.size(0) logger.info( f"Epoch {epoch} - train loss: {train_loss:.5}, test loss: {test_loss:.5}, acc: {correct / total:.5}, lr: {lr_scheduler.get_last_lr()[0]:.5g}", ranks=[0]) if __name__ == '__main__': main()