import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.utils import get_current_device from collections import namedtuple import psutil from colossalai.core import global_context as gpc _GLOBAL_CUDA_MEM_FRACTION = 1.0 # copy from PatrickStar def _get_cpu_memory_info(): ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"]) try: # psutil reads the memory info from /proc/memory_info, # which results in returning the host memory instead of # that of container. # Here we try to read the container memory with method in: # https://stackoverflow.com/a/46213331/5163915 mems = {} with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f: for line in f: fields = line.split() mems[fields[0]] = int(fields[1]) * 1024 total = mems[b"MemTotal:"] free = mems[b"MemFree:"] cached = mems[b"Cached:"] buffers = mems[b"Buffers:"] used = total - free - cached - buffers if used < 0: used = total - free mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used) except FileNotFoundError: mems = psutil.virtual_memory() mem_info = ps_mem_info( total=mems.total, free=mems.free, cached=mems.cached, buffers=mems.buffers, used=mems.used, ) return mem_info def colo_device_memory_used(device) -> int: if not isinstance(device, torch.device): device = torch.device(f"cuda:{device}") if device.type == 'cpu': mem_info = _get_cpu_memory_info() # FIXME(jiaruifang) only work for 1-CPU multi-GPU # CPU memory is sharded with all processes # Not support multi-GPU multi-CPU # We need a local_world_size here ret = mem_info.used / gpc.get_world_size(ParallelMode.DATA) return ret elif device.type == 'cuda': ret: int = torch.cuda.memory_allocated(device) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats(device) return ret def colo_set_process_memory_fraction(ratio: float) -> None: """colo_set_process_memory_fraction set how much cuda memory used on the gpu belonging to the current process. Args: ratio (float): a ratio between 0. ~ 1. """ global _GLOBAL_CUDA_MEM_FRACTION _GLOBAL_CUDA_MEM_FRACTION = ratio torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device()) def colo_cuda_memory_capacity() -> float: """ Get cuda memory capacity of the current cuda. """ return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION