import torch from typing import List, Optional from colossalai.logging import get_dist_logger from colossalai.context.singleton_meta import SingletonMeta class PyTorchProcessGroupDict(metaclass=SingletonMeta): def __init__(self): # distributed settings self.dict = {} def get(self, rank_list: List[int], backend: str = 'nccl'): """Reuse Pytorch ProcessGroup when such a group is initialized """ rank_tuple = tuple(rank_list) # we need to convert the passed list to a tuple # since List is unhashable pg_key = (backend, rank_tuple) if pg_key not in self.dict: self.logger = get_dist_logger('ProcessGroup') self.logger.info(f'NCCL initialize ProcessGroup on {rank_list}', ranks=[0]) self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend) return self.dict[pg_key] PYTORCHPGDICT_ = PyTorchProcessGroupDict() class ProcessGroup: """ Process Group contains group partition for Tensor Parallel and Data Parallel. NOTE, the ProcessGroup must be used after torch.distributed.initialize() args: rank: the global rank of the current process. ranks: List[int], a list of rank id belongings to this process group. backend: str, the backend of the process group. tp_degree: Optional[int], tensor parallelism degree, default None means 1 dp_degree: Optional[int], data parallelism degree, default None means len(ranks) """ def __init__(self, rank: Optional[int] = None, ranks: Optional[List[int]] = None, tp_degree: Optional[int] = None, dp_degree: Optional[int] = None) -> None: if not torch.distributed.is_initialized(): self.is_init = False return assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized" if rank is None: self._rank = torch.distributed.get_rank() else: self._rank = rank if ranks is None: self._rank_list = list(range(torch.distributed.get_world_size())) else: self._rank_list = ranks self._rank_list.sort() # ensure that the list is in order self._world_size = len(self._rank_list) if dp_degree is None and tp_degree is None: self._dp_degree = self._world_size self._tp_degree = 1 elif dp_degree and not tp_degree: self._dp_degree = dp_degree assert self._world_size % self._dp_degree == 0, f"DP degree {dp_degree} should be divisible by {self._world_size} hen DP degree is None" self._tp_degree = self._world_size // dp_degree elif not dp_degree and tp_degree: self._tp_degree = tp_degree assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None" self._dp_degree = self._world_size // tp_degree else: self._dp_degree = dp_degree self._tp_degree = tp_degree assert self._dp_degree * self._tp_degree == self._world_size, \ f"the world size {self._world_size} should equals to the product of DP degree {self._dp_degree}" \ f"and TP degree {self._tp_degree}" self._tp_rank_list = None self._dp_rank_list = None for i in range(self._dp_degree): i_tp_list = [self._rank_list[i * self._tp_degree + j] for j in range(self._tp_degree)] PYTORCHPGDICT_.get(i_tp_list, 'nccl') if self._rank in i_tp_list: self._tp_rank_list = i_tp_list for j in range(self._tp_degree): j_dp_list = [self._rank_list[i * self._tp_degree + j] for i in range(self._dp_degree)] PYTORCHPGDICT_.get(j_dp_list, 'nccl') if self._rank in j_dp_list: self._dp_rank_list = j_dp_list self._has_cpu_groups = False self.is_init = True def set_cpu_groups(self): if self.has_cpu_groups: return for i in range(self._dp_degree): i_tp_list = [self._rank_list[i * self._tp_degree + j] for j in range(self._tp_degree)] PYTORCHPGDICT_.get(i_tp_list, 'gloo') for j in range(self._tp_degree): j_dp_list = [self._rank_list[i * self._tp_degree + j] for i in range(self._dp_degree)] PYTORCHPGDICT_.get(j_dp_list, 'gloo') self._has_cpu_groups = True @property def has_cpu_groups(self): return self._has_cpu_groups def __repr__(self): if self.is_init: return "ProcessGroup:\n\tRank: {}, World size: {}, DP degree: {}, TP degree: {}\n\tRanks in group: {}".\ format(self._rank, self._world_size, self._dp_degree, self._tp_degree, self._rank_list) else: return "ProcessGroup not initialized" def __eq__(self, obj: 'ProcessGroup') -> bool: if not isinstance(obj, ProcessGroup): return False if self._rank != obj._rank: return False if self._rank_list != obj._rank_list: return False if self._tp_rank_list != obj._tp_rank_list: return False if self._dp_rank_list != obj._dp_rank_list: return False if self._tp_degree != obj._tp_degree: return False if self._dp_degree != obj._dp_degree: return False return True def rank(self): return self._rank def ranks_in_group(self): return self._rank_list def world_size(self): return self._world_size def tp_rank_list(self): return self._tp_rank_list def dp_rank_list(self): return self._dp_rank_list def tp_local_rank(self): return self._rank % self._tp_degree def dp_local_rank(self): return self._rank // self._tp_degree def dp_world_size(self): return len(self._dp_rank_list) def tp_world_size(self): return len(self._tp_rank_list) def dp_process_group(self): # return self._dp_process_group return PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl') def tp_process_group(self): # return self._tp_process_group return PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl') def cpu_dp_process_group(self): assert self._has_cpu_groups return PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo') def cpu_tp_process_group(self): assert self._has_cpu_groups return PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo') def get_ranks_in_dp(self): return self._dp_rank_list def get_ranks_in_tp(self): return self._tp_rank_list